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1. Introduction

Topological and differentiable (real) manifolds are nowadays present in almost all mathe-

matical models of natural phenomena or engineering problems containing some differential

equation. Often the manifold under consideration carries an additional structure char-

acteristic for the model, and its intended range of validity. Causal, homogeneous, and

multidimensional structures shall be the topic below. They find their natural applica-

tions within the range of current mathematical cosmology. The latter today includes not

only classical relativistic cosmology but in particular also its extensions towards quantum

geometry and to dimensions different than 1 + 3. Accordingly, already one third of the

International Seminar on Current Topics in Mathematical Cosmology, 1998 in Potsdam,

was dedicated to these modern extensions [1].

It is well known that a geometry given by a differentiable connection on a manifold

need not be related to any metric, although vice versa any differentiable metric defines a

unique metric compatible connection, namely the Levi-Civita connection.

Similarly, below we define rather general causal structures on (real) manifolds which

do not imply the existence of a metric. Even a non-differentiable topological manifold may

carry a causal structure. However, in this case there is no definition neither of a connection

1-form, nor of a curvature tensor, nor of a metric. Even if the manifold is differentiable, a

differentiable causal structure does not imply the existence of a (conformal) metric (of any

signature). Moreover, given a causal structure and a metric of corresponding signature,

both need not necessarily be compatible with each other.

Simple, simply laced singularities (often also known as ADE singularities according to

the Cartan type of corresponding Lie algebras) provide a local model for a rather general

class of structures on manifolds which might also be called pseudo-causal. Relativity and

cosmology usually refer to the conical singularity as local model for causality. Therefore,

unless stated otherwise, here we will refer to causal structures which are given as local

cone structures.

A Hausdorff (i.e. T2-strongly separating) topological manifold M without boundary

is topologically homogeneous per definition, since the neighborhoods of all points are

modeled over the same standard vector space. Note however that a homogeneous Cr-

structure on a closed manifold need not be Cr+1-homogeneous, while the vice versa is

always true.

The homogeneity of a manifold M can be expressed by the existence of a transitive

group action on the manifold. A homogeneous manifold is characterized locally by its

homeomorphism group. If M is homogeneous, any two points are connected by a local

homeomorphism, and the (local) homeomorphism group HomM acts on the entire man-

ifold. (Note: Here we do not consider global homeomorphisms which are a topic in its

own.) If M contains boundary points, one can always achieve topological homogeneity

by restricting the manifold to its interior.

However, if the manifold carries more structure, homeomorphisms have to preserve not

only the local topology but also the additional structure. So, a Cr-differential structure

on a manifold restricts the homeomorphism to Cr-diffeomorphisms. Similarly, a causal

structure on a manifold restricts its homeomorphisms to those which preserve the causal
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structure. Likewise, a diffeomorphism of a Riemannian manifold (M, g) is a homeomor-

phism of the latter, iff it is an isometry.

In general with any given structure on a manifold, the structure-preserving homeo-

morphisms form a subgroup of the homeomorphism group. A structure s on a manifold

M is homogeneous, iff the structure preserving homeomorphisms group Hom(M, s) acts

transitively on M .

The cosmological application of causal topological manifolds refers to the requirement

of quantum geometric gravity to implement the local topological content of general relativ-

ity in absence of a background geometry. Homogeneous and multidimensional geometries

both relate to symmetries present either in the large scale cosmological structure or due to

unification of general relativity with other fundamental symmetries in higher dimension.

Dynamically the different symmetries reflect themselves in fundamental forces: gravity

resulting from general relativity, and other forces from other symmetries.

Rather than trying to give an exhaustive discussion of causal, homogeneous, and mul-

tidimensional structures in mathematical cosmology, below the focus will be on some

selected aspects of these structures which are of particular relevance in current research.

Topologically defined causal structures are of importance when the geometry itself is

subject to quantization, i.e. for canonical quantum gravity in particular. Homogeneity

structures are not only suggested by phenomenological symmetries in cosmology, but the

construction of a classifying space of local homogeneous geometries in terms of scalar

algebraic invariants, and the relation to a similar classifying space of the isometries gives

systematic insight about the stability of a particular isometry under deformation of the

geometry. Multidimensional and at least partially homogeneous geometries are essential

for the existence of elegant effective mathematical models, like the effective sigma-model

of multidimensional geometry, which result in clarification, generalization, and prediction

of structures and results inherent in the geometrical content of modern unification ap-

proaches such as M-theory, and also may be sufficiently tractable in order to be a basis for

further investigations on higher dimensional geometry, like their canonical quantization

via midisuperspaces, or the imprint of features of the higher-dimensional geometry in 3+1

dimensions (”windows towards extra-dimensions”), e.g. in the Hawking temperature of

black holes extended by p-branes. Classical general relativity includes traditionally clas-

sification and analysis of solutions to the field equations of Einstein-Hilbert actions with

various matter terms on 4-dimensional Lorentzian manifolds within some Cr-category of

differentiability, where most results are given for r ≥ 2 and often C∞-smoothness is as-

sumed. Traditional mathematical cosmology is targeted to investigate those solutions,

which model a hypothetical large scale structure of our 3 + 1-dimensional universe un-

der more or less realistic assumptions about its matter content. Roughly those models

may be divided in those which are spatially homogeneous, and those which are spatially

in homogeneous. With an appropriate choice of time coordinates, homogeneous spatial

3-manifolds result here as hypersurfaces of constant time.

In traditional classical general relativity and cosmology, the causal structure is given

a priori by the Lorentzian signature of the geometry. Continuous efforts towards a con-

sistent canonical quantization of the geometry underlying general relativity, have risen
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new issues on the possible treatment of causality. Canonical quantization has first been

executed for cosmological models with effective minisuperspaces of homogeneous spatial

geometries. Investigation of such models, and the discussion of the state and relation

of general relativity and quantum mechanics has emerged into to field of quantum cos-

mology. Among the issues at dispute in quantum cosmology form its early days was the

question of the role of time, and the concept of causality. That issues prevailed in the

more general recent approaches towards quantization of general relativity. The axiomatic

setting of algebraic quantum field theory (AQFT) is most appropriate to discuss the con-

ceptual issue of causality in any general relativistic quantum field theory (QFT) and in

any theory of quantum geometry arising as a quantization of general relativity. A quan-

tum geometry may result from a canonical quantization scheme of classical geometry, on

a fixed topology of the underlying manifold. A causal structure is, locally and globally,

in general stronger than the standard topological or differentiable structure of manifolds,

but it may be much weaker than a metric structure, and even may be weaker than a

conformal metric structure. Hence the question now is: Should the causal structure be

treated under quantization as a background, or should it be treated dynamically like the

geometry itself ?

Under a direct generally covariant quantization method a quantum concept of causal-

ity should result dynamically together with quantum geometry. Hence like the geometry

itself, also causality would become fuzzy. However the approach in canonical quantization

is different. A foliation of the underlying (space-time) manifold is usually assumed, and

under the pretext that changes of the foliation are gauge transformations for quantum

geometries, the geometry of each slice is quantized first canonically, and then weaved

through the whole manifold. With a representation of quantum 3-geometry by spin net-

works, the quantized 4-geometry is given in terms of spin foams, which may be viewed

as weaves of spin networks on slices through the whole manifold. For that approach it

is crucial to have a concept of causality, i.e. to know whether an edge of the spin foam

is space-like (i.e. it belongs to a spin network on a slice), or time-like, or null. For this

purpose it is useful to have a notion of causality which is purely topological, independent

of the metric and any part of the geometry which is subject to quantization.

The analysis of 3+1-dimensional solutions with singularities, and more particularly of

black hole solutions, are by now an integral part of mathematical cosmology. The static,

spherically symmetric solutions like the well known Schwarzschild solution are spatially

inhomogeneous, but still hypersurface homogeneous 4-geometries. The homogeneous hy-

persurfaces here are hypersurfaces of constant radial parameter.

The physical idea of unification of gravity with additional structures related to other

forces, starting from the Kaluza-Klein theory up to present days M-theory, had its impact

on the development of mathematical cosmology too. The unification idea topologically re-

flects in a fiber bundle structure with the 3+1-dimensional space-time manifold underlying

the gravitational field as base manifold and an additional manifold of carrying other fields

as fiber. Subsequently the dimensionality of the total manifold in mathematical models

of cosmology became 1 + 3 + d, with extra dimension d from the fiber manifold. Topo-

logically it is then an immediate generalization to consider multidimensional manifolds
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consisting of such a fiber bundle where the fiber admits a multidimensional decomposition

as a direct product of a finite number n of factor spaces of dimensions d1, . . . , dn. How-

ever, the physical unification idea is implemented not only within the topological category

of manifolds, but more particularly also on the level of (pseudo-)Riemannian geometries

on multidimensional manifolds. The physical idea is to extract the 3 + 1-dimensional

space-time with additional fields thereon, as a solution of the dimensional reduction of

the Einstein-Hilbert action (possibly with few extra terms which may contain few elemen-

tary fields) on a multidimensional manifold to the external 3 + 1-dimensional manifold.

The dimensional reduction requires firstly that the geometry admits a multidimensional

decomposition (as tensor on) on the multidimensional manifold, and secondly that all

internal factor spaces be homogeneous (and possible elementary fields be homogeneous

on the internal manifold fiber).

By now multidimensional cosmological models have been investigated quite detailed

both, for classes of classical spatially homogeneous solutions (e.g. solutions related to

Toda systems or solutions with spherical symmetry) and for minisuperspace models with a

finite-dimensional phase space admitting canonical quantization, and elementary solutions

of the quantized scalar constraint, the Wheeler-deWitt equation, which under appropriate

superposition yield solution of quantum cosmology with defined boundary conditions.

The discovery of the multidimensional σ-model extended these results in two direc-

tions. Firstly, unlike the first multidimensional cosmological models, the multidimensional

σ-model admits multidimensional geometries which are not spatially homogeneous, and

which may have a base manifold of arbitrary dimension. Secondly, the multidimensional

σ-model turned out to be the right structure to describe the geometric content of p-

branes, charged membrane like structures in M-theory (the contemporary generalization

of string theory), classically, in arbitrarily curved backgrounds, just on the basis of multi-

dimensional general relativity and antisymmetric fields generalizing the Maxwell field, i.e.

within the setting of manifolds and bosonic fields, without the need to utilize algebraic

concepts like dualities or supersymmetry.

The work below is divided in three large parts. The first part is dealing with causal

structures and applications to AQFT and quantum gravity based conceptually on the

work of [2], [3], [4], [5], [6], [7], [8]. Its more specific consequences for quantum black

holes and strings [9], relate also to some earlier work [10], [11], [12] on tubular networks

in space-time.

The second part is devoted to homogeneous structures, in particular to classifying

spaces of homogeneous geometries and their isometries. It is based on [13], [14], [15]. It is

related to applications in multidimensional cosmology in [16], and to earlier work of [17],

[18], [19], [20], [21], [22].

The third part is on multidimensional geometry and its effective σ-model description.

It is based on work described in [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], and

[33]. The topic is also related to other work within the multidimensional setting [34],

[35], [36], and to early investigations on conformal transformations in [37], [38], and [39].

Some related work on higher-order gravity is discussed in [40]. The general topic of σ-

models has been treated by the author already more than a decade ago in [41], when
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investigating representations of supersymmetries in target spaces appearing in models of

statistical physics as a more particular aspect.

The work is organized by the following sections.

Sect. 2 deals with topological definitions of causal structures of different strengths on

topological or differentiable manifolds. The existence of a topological causal structure is

independent of the existence of a metric structure. In [2] topological causal structures

have been introduced via generalized cones.

After an introduction to local cone structures in Sect. 2.1, Sect. 2.2 deals with

causality on topological manifolds, and Sect. 2.3 discusses causal index sets and diffeo-

morphisms.

Sect. 3 is the first section dedicated to cosmological applications. It deals with appli-

cations of the causal structures from the previous section in quantum general relativity.

Sect. 3.1 gives an axiomatic introduction to algebraic QFT on manifolds, generalizing

the elegant Haag-Kastler formulation of quantum field theory on Minkowski space. This

approach is particularly useful in order to clarify the general structure of the theory.

The most basic ingredient is a causal net of local *-algebras on a net of localization

domains. Investigations in [5] and [3]) searching for a background independent extension

of the Haag-Kastler framework to more general causal nets of *-algebras on differentiable

manifolds, have shown that certain key properties (isotony, covariance, causality, etc.)

should be maintained as far as possible.

In Sect. 3.1.1 we deal with the general axioms of QFT on a differentiable manifold

(including in particular isotony and covariance) which do not require a particular notion

of causality. Sect. 3.1.2 then suggests axioms for QFT on a manifold with cone causality.

As a much more particular application Sect. 3.2 then deals with quantum geometry as

an algebraic QFT. In [4] it was shown how quantum geometry may fit into the framework

of algebraic QFT. This setting naturally accommodates spin networks on graphs. This

was used in [9] to investigate the classical limit of quantum geometry. If quantum gravity

is a true AQFT with infinitely many vertices, the classical limit yields a tubular network of

resolutions of vertices and edges. Remarkably, resolutions like these had already previously

been discussed in [10]) from a different point of view.

Sect. 4 is dedicated to homogeneity of different structures. Sect. 4.1 introduces ho-

mogeneous manifolds for structures of various strengths Sect. 4.2 focuses on local homo-

geneous geometries, and more particularly on topological classifying spaces for geometries

and corresponding algebras. Sect. 4.2.1 reviews the classifying space of local isometries in

fixed real dimension. It is given as non-separating T0-space of corresponding Lie-algebras.

In [19] such classifying spaces have been constructed up to real dimension 4. Sect. 4.2.2

identifies the topology of such a classifying space as the dual of the Zariski topology. This

can been seen best in the view of Lie algebra cohomology. Sect. 4.2.3 describes the con-

struction classifying spaces of local homogeneous geometries. In particular, a complete

classification of local homogeneous Riemannian 3-geometries in terms of scalar geometric

invariants is given as in [14]. Given the principal anisotropies, the invariants can be calcu-

lated directly from a certain normal form of the Lie-algebra. Following [13] it it is shown

how the classifying space of local homogeneous 3-geometries projects to the classifying
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space of Lie-algebras.

The analogous classification of Lorentzian geometries is still under investigation. One

of the main problems here is to control various possible relative orientations of the light

cone axis with respect to the principal axes of anisotropy in tangent space.

Sect. 5 is the second section dedicated to cosmological applications. It sketches briefly

possible applications of the classifying spaces of algebras and geometries in the context of

rigidity of algebraic structures, particularly of isometries. Previously obtained classifying

spaces are shown to shed some light on the rigidity of the local isometry type under the

variation of Riemannian or Lorentzian geometries.

The complete parametrization of local 3-geometries of a definite class like the homoge-

neous one is of particular interest for a systematic approach to their canonical quantiza-

tion. The spatially homogeneous class is of primary importance for quantum cosmology.

Sect. 6 is devoted to multidimensional geometry. In particular the effective sigma-

model for multidimensional (Einstein-Hilbert) geometry is introduced as in [24] and its

general structure is clarified. The bosonic content of string theory contained in Einstein-

Hilbert gravity coupled to p-branes and scalars can be described as an effective sigma-

model in lower (say 3+1) dimensions coupled to additional interacting dilatonic fields,

provided the higher-dimensional curved (!) spacetime has some (multidimensional) sym-

metry. Sect. 6.1 reviews the effective σ-model for pure multidimensional geometry as it

was first introduced in [26]. Sect. 6.2 extends the σ-model by extra scalars and p+2-forms,

following the work of [31]. The sigma-model of [23] provides a systematic geometrical

description of bosonic string theory sectors on curved (!) background. Historically in gr-

qc/9608020 the first such description has been obtained for a multidimensional spacetime

background. Sect. 6.3 presents the general target space structure of the effective sigma-

model of [24]. Sect. 6.4 introduces special, particularly useful coordinate gauges on M0,

namely the so-called proper coordinates in 6.4.1 and the so-called harmonic coordinates

in 6.4.2 .

It follows Sect. 7 as third and most extensive section dedicated to cosmological ap-

plications. In this section we present some of the numerous solutions to the multidimen-

sional sigma-model [24]. Following [32], Sect. 7.1 describes the solutions with Abelian

target-space, and Sect. 7.2 is devoted to the general structure of orthobrane solutions with
(E)V = 0. Sect. 7.3 gives the general setting for spherically symmetric p-branes. Solutions

with p-branes have been obtained first in [31]. In [23] it was shown that such solutions

exist, if the target-space is locally symmetric. Sect. 7.4 describes black holes with electro-

magnetic (EM) branes. As in [27], we consider both, solutions with orthobranes (in 7.4.1)

and solutions with degenerate brane charges Q2
e = Q2

m (in 7.4.2). Generalized static black

holes solutions with intersecting p-branes predict interesting physical effects. E.g. the

Hawking temperature depends critically on the dimension of the p-brane intersection.

Sect. 7.5 deals with spatially homogeneous solutions as in [30]. After introducing

multi-component perfect fluid cosmology in Sect. 7.5.1 and the general multidimensional

dynamics for the spatially homogeneous case in Sect. 7.5.2, Sect. 7.5.3 presents the

classical solutions of the integrable 3-component model, Sect. 7.5.4 deals with classical

wormholes, Sect. 7.5.5 shows how to reconstruct classical potentials. and Sect. 7.5.6
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treats solutions for the canonically quantized model.

Following [25] Sect. 7.6 demonstrates the particular role of the Einstein frame for

cosmology. Sect. 7.6.1 shows how to obtain solutions in the Einstein frame in general,

Sect. 7.6.2 then presents solutions in their original form, and Sect. 7.6.3 gives then

corresponding solutions in the Einstein frame.

Sect. 7.7 is devoted to solutions of multidimensional m-component cosmology as

described in [28]. In particular, 7.7.1 presents the Am Toda chain solution, and 7.7.2 gives

an example in Einstein frame.

Sect. 7.8 considers the exceptional 2-dimensional case as considered in [26] and [29]

corresponding to dilaton gravity. In particular 7.8.1 deals with the reduction from (spa-

tially) inhomogeneous cosmology, 7.8.2 derives 2-dimensional dilaton gravity from 5-d

Einstein gravity, 7.8.3 considers a spherically symmetric model coupled to matter, and

7.8.4 presents static solutions and discusses the horizon problem in this setting.

Finally, Sect. 8 discusses the results and gives an outlook to current and future

research.

Although the author has tried to eliminate obvious misprints, mistakes, inconsisten-

cies, and to unclear formulations as much it was as possible within the scope of time

available, the present dissertation does not claim to be a polished presentation of a closed

topic with clinical perfection in detail. The reader should keep in mind that the main

goal of the following sections is to give an impression, insight and overview of three main

directions of research in mathematical cosmology followed by the author during the recent

years.

2. Causal structures

While classical general relativity usually employs a Lorentzian space-time metric, all gen-

uine approaches to quantum gravity are free of such a metric background. This poses

the question whether there still exists a notion of structure which captures some essential

features of light cones and their mutual relations in manifolds in a purely topological

manner without a priori recursion to a Lorentzian metric or a conformal class of such

metrics. Below we will see that the answer is positive.

It is a well known folk theorem that the causal structure on a Lorentzian manifold

determines its metric up to conformal transformations. In [42] and [43] a path topology for

strongly causal space-times was defined which then determined their differential, causal,

and conformal structure. In [44] it was shown that the conformal class of a Lorentzian

metric can be reconstructed from the characteristic surfaces of the manifold. Similarly

[45] gives a nice proof that the null cones determine the Lorentzian metric (modulo global

sign) up to a conformal factor. All these previous results already indicate that the notion

of a causal structure could exist indeed in a different and possibly more general setting

than that of Lorentzian space-times. However all the previously mentioned investigations

in the literature assume a priori the existence of some undetermined Lorentzian metric

and then show that it can be determined modulo conformal transformation uniquely by

some other structure.
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Motivated by the requirements on suitable structures for a theory of quantum gravity,

in this paper new notions of causal structure are developed which do not assume a priori

existence of any (Lorentzian) metric or conformal metric but rather work on arbitrary

topological and differential manifolds.

In Sect. 2.1 weak (C ) and strong (C m) local cone (LC) structures are defined on any

topological (or differentiable) manifold M . These structures are given by continuous (or

differentiable) families of pointwise homeomorphisms from the standard null cone variety

in IRd+1 or a manifold thickening thereof respectively into M . In the differentiable case

it turns out that a strong LC structure implies the existence of a consistent, conformal

Lorentzian metric, while a weak LC structure already implies its uniqueness should one

exist. A metric consistent with a strong LC structure has to contain pointwise informa-

tion about the asymptotic structure of the cone at the vertex. Within a given manifold

thickening of the cone at a given point of M , in any neighborhood of the vertex, the

cone itself need a priori not at all be related to the null structure spanned by the null

geodesics of the metric in this neighborhood. However, if in any point of some region the

null geodesics of a metric and the cone of the local cone structure are consistent with each

other, this yields consistency of the notions of causality defined by the cone structure and

the metric respectively.

Sect. 2.2 gives definitions for causality of increasing strength, each definition being

essentially a consistency condition for cones at different points in any open region of

M . Cone (C-) causality allows first of all the definition of a causal complement with

reasonable properties. It enables us also to define in a topological (differentiable) manner

spacelike, null, and timelike curves. We discuss C-causality also in the particular context

of a fibration. Generalizations of the most common causality notions for space-times in

purely topological terms are provided. In the case of Lorentzian manifolds these notions

agree with the usual ones and they assume their usual hierarchy. Finally, precausality is

defined as a notion which makes the future and the past of any cone homeomorphic to

the future and the past of the standard cone C in IRd+1 respectively.

Sect. 2.3 is introduces causal index sets and causal diffeomorphisms. It also addresses

the issue of consistency of a foliation of the manifold with its cone structure and causality,

as it arises below in cosmological applications.

Here and below a CAT manifold refers to a Hausdorff (T2) space with CAT structure,

where CAT= C0 (the topological category) or CAT⊂ C1 (any differentiable category). If

CAT⊂ C1, a CAT homeomorphism is a diffeomorphism and a CAT continuous map is a

differentiable map. For differentiable categories we also define CAT−1 := Cr if CAT= Cr+1,

CAT−1 := C∞ if CAT= C∞, and CAT−1 := Cω if CAT= Cω.

2.1 Local cone structures

In this section we derive local notions of a cone structure on a topological d+1-dimensional

manifold M (CAT⊂ C0). Let

C := {x ∈ IRd+1 : x2
0 = (x− x0e0)

2},C + := {x ∈ C : x0 ≥ 0},C − := {x ∈ C : x0 ≤ 0}
(2.1)
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be the standard (unbounded double) light cone, and the forward and backward subcones

in IRd+1, respectively.

The standard open interior and exterior of C is defined as

T := {x ∈ IRd+1 : x2
0 > (x− x0e0)

2},E := {x ∈ IRd+1 : x2
0 < (x− x0e0)

2}. (2.2)

A manifold thickening with thickness m > 0 is given as

C m := {x ∈ IRd+1 : |x2
0 − (x− x0e0)

2| < m2}, (2.3)

The characteristic topological data of the standard cone is encoded in the topological

relations of all its manifold subspaces (including in particular its singular vertex O) and

among each other.

Typical (CAT) manifold subspaces of C are the standard future and past cones C ±,

and the standard light rays

l(n) := {x ∈ C : x0 = (x, n)}, (2.4)

where n ∈ Sd−1 ⊂ p is a normal direction in the d-dimensional hyperplane p := {x ∈
IRd+1 : (x, y) = 0 ∀y ∈ a} perpendicular to the cone axis a := {x ∈ IRd+1 : x = λe0, λ ∈
IR}.

The topological relations between all the CAT manifold subspaces of the cone are the

natural data which will be required to be conserved under a homeomorphism of the cone

as a topological space into the manifold M at any point p.

Let τ denote the closed sets of the manifold topology of C −O. The set C can either

inherit the induced topology τ1 from IRd+1, which is Hausdorff (places in the original

publication [2] which state the contrary are mistaken) but not locally Euclidean, or it can

be equipped with a coarser subtopology defined in terms of closed sets as τ2 := {{0}∪V :

V ∈ τ}
⋃
{V ∈ τ}, which is locally Euclidean. However τ2 places geometrically unnatural

restrictions on possible submanifolds of C . Hence, unless specified otherwise, C will be

equipped with τ1.

Definition 1: Let M be a CAT manifold. A (CAT) (null) cone at p ∈ intM is the

image Cp := φpC of a homeomorphism of topological spaces φp : C → Cp ⊂ M with

φp(0) = p, such that

(i) every (CAT) submanifold N ⊂ C is mapped (CAT) homeomorphically on a submani-

fold φp(N) ⊂M ,

(ii) for any two submanifolds N1, N2 ⊂ C there exist homeomorphisms φp(N1)∩φp(N2) ∼=
N1∩N2 and φp(N1)∪φp(N2) ∼= N1∪N2 of (CAT) manifolds if these are (CAT) manifolds

and of topological spaces otherwise, and

(iii) if CAT⊂ C1 then for any two CAT curves c1, c2 :]− ε, ε[→ C with c1(0) = c2(0) = p

it holds T0c1 = T0c2 ⇔ Tp(φp ◦ c1)|]−ε,ε[ = Tp(φp ◦ c2)|]−ε,ε[.

Condition (iii) says that in the differentiable case the well defined notion of transver-

sality of intersections at the vertex is preserved by φp.

On each homeomorphic cone Cp at any p ∈ intM , the topology τ1 or τ2 of C yields

under φp likewise a locally non-Euclidean topology φp(τ1) or a locally Euclidean one φp(τ2).
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However, φp(τ2) would unnaturally restrict the possible submanifolds of C , while φp(τ1)

is consistent with the topology induced from M .

Definition 2: An (ultraweak) cone structure on M is an assignment intM 3 p 7→ Cp

of a cone at every p ∈ intM .

A cone structure on M can in general be rather wild, with cones at different points to-

tally unrelated to each other, unless we impose a topological connection between the cones

at different points. Most naturally the connection is provided by a notion of continuity of

a family {Cp}p∈c of cones Cp with vertex on a continuous curve c within a region U ⊂M .

Let us define continuity of this family with respect to the topology on {Cp}p∈U⊂M defined

by the convergence Cp → Cp0 for p→ p0 in all points p0 ∈ U , where Cp → Cp0 iff for each

manifold N0 ⊂ Cp0 there exists a family of manifolds Np ⊂ Cp such that N → N0 in the

topology induced from M .

This allows to define a local cone (LC) structures.

Definition 3: Let M be a CAT manifold. A weak (C ) local cone (LC) structure on

M is a cone structure which is (CAT) continuous i.e. {p 7→ Cp} is a (CAT) continuous

family.

Given a cone structure one wants to know first of all under which conditions, for given

p ∈ intM an exterior and interior of the cone can be distinguished locally, i.e. within

(M − Cp) ∩ U for any given open neighborhood U 3 p. Proposition 1: Let ∀p ∈ intM

exist open (CAT) submanifolds Tp and Ep such that the interior of M can be written as

the disjoint union intM = Cp
◦∪Tp

◦∪Ep.

(i) Then Tp and Ep can be topologically distinguished locally in any neighborhood of the

vertex p if and only if for any neighborhood U 3 p it holds (Tp|U) 6∼= (Ep|U), i.e. Tp|U and

Ep|U are inequivalent (in CAT).

(ii) Given any neighborhood U 3 p assume ∃ k ∈ IN0 : Πk(Tp|U) 6= Πk(Ep|U), where Πk

denotes the k-homotopy group. Then Tp and Ep can be topologically distinguished locally

in any neighborhood of the vertex p.

Proof: (i) follows from U − Cp|U = Tp|U
◦∪Ep|U . (ii) holds because homotopy groups are

topological invariants. �
It is possible to extend the homeomorphism φp from C itself to larger open sets of

IRd+1. Note however that, although Cp = φp(C ), T and E need not be homeomorphic

to φp(T ) and φp(E ) respectively. A notion of precausality is set up below to ensure

Ep
∼= φp(E ).

A weak LC structure at each point p ∈ intM defines a characteristic topological space

Cp which is locally Euclidean of codimension 1 everywhere but at p. In particular Cp

does not contain any open U 3 p from the manifold topology of M . However stronger

structures can be defined as follows.

Definition 4: Let M be a CAT manifold. A (CAT) (manifold) thickened cone of

thickness m > 0 at p ∈ intM is the (CAT) image C m
p := φpC m of a (CAT) homeomor-

phism φp of the manifold C m ⊃ C into M with φp(0) = p.

Note that φp maps C into Cp ⊂ C m
p . Due to the manifold property the notion of a

thickened cone is much simpler than that of a cone itself. It also clear that now the only

consistent topology on C ⊂ C m is τ1 and correspondingly φp(τ1) on Cp ⊂ C m
p .
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Definition 5: A thickened cone structure on M is an assignment intM 3 p 7→ C m(p)
p

of a thickened cone at every p ∈ intM .

Note that in general the thickness m can vary from point to point in M Here m :

M → IR+ is an a priori not necessarily continuous function. However an important case

even more special than the continuous one is that of constant m.

Definition 6: A homogeneously thickened cone structure on M is a thickened cone struc-

ture intM 3 p 7→ C m
p with constant thickness m.

Homogeneity of the thickness of a cone structure imposes some regularity on the latter.

In general, at least continuity of structures onM is a natural assumption in the topological

category.

Definition 7: Let M be a CAT manifold. A strong (C m) LC structure on M is a (CAT)

continuous family of (CAT) homeomorphisms φp : C m → C m(p)
p ⊂M with φp(0) = p and

such that the thickness m is a CAT function on M .

In particular the conditions of (ii) in Proposition 1 apply for all manifolds of dimension

d + 1 > 2 with a strong LC structure, while a weak LC structure at p ∈ intM may not

be able to distinguish Tp|U and Ep|U within any U 3 p.
Theorem 1: Let M carry a strong LC structure. At any p ∈ intM there exists an

open U 3 p such that:

For d := dimM − 1 > 0 it is |Π0(Tp|U)| = 2 and Πd−1(Ep|U) = Πd−1(S
d−1),

for d > 1 it is Πd−1(Tp|U) = 0 and |Π0(Ep|U)| = 1,

for d = 1 it is Πd−1(Tp|U) = Πd−1(Ep|U) = Π0(S
0), i.e. |Π0(Tp|U)| = |Π0(Ep|U)| = 2,

and in dimension d = 0 it is Tp = Ep = ∅.
Proof: For all p ∈ intM the strong LC structure provides a thickened cone C m(p)

p . Since

m(p) > 0, C m(p)
p contains always a neighborhood U 3 p homeomorphic to a neighborhood

φ−1
p (U) 3 0 of the standard cone which in any dimension has the desired properties. �

At any interior point p ∈ intM the open exterior Ep and the open interior Tp of the

cone Cp are locally topologically distinguishable for d > 1, indistinguishable for d = 1,

and empty for d = 0. With a strong LC structure Tp|U 6= Ep|U∀U 3 p ⇐⇒ d + 1 > 2,

whence locally in any neighborhood U 3 p the interior and exterior of Cp ∩ U at p in U

has an intrinsic invariant meaning. Cp|U divides U − Cp|U in three open submanifolds,

a non-contractable exterior Ep|U , plus two contractable connected components of Tp =:

Fp|U ∪Pp|U , the local future Fp|U and the local past Pp|U with ∂Fp|U = C +
p |U where

C +
p := (φpC +) and ∂Pp|U = C −

p |U where C −
p := φpC − respectively. This rises also the

question if and how Fp and Pp or their local restriction to U 3 p can be distinguished.

This problem is solved by a topological Z2 connection (see also Section 2.2 below).

Given a strong LC structure, a compatible local (conformal) metric can always be

proven to exist on any differentiable manifold M with CAT⊂ C1. Within such CAT,

let η be a Lorentzian metric on IRd+1 which is compatible with C by being at 0 (CAT-

)asymptotically the flat Minkowskian one. It can be restricted to C m and pulled back

pointwise along (φp)
−1 to a metric g on C m(p)

p . The CAT continuity of the family {p 7→
C m(p)

p } implies CAT−1 continuity of the family {p 7→ g|
C

m(p)
p

}. So we can extract a CAT−1

continuous metric {p 7→ gp}.
Here we are interested particularly in Lorentzian metrics which are locally compatible
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with a (weak or strong) LC structure. The Minkowski metric η is locally compatible

with the cone C in the sense that η0(v, v) = 0 ⇔ v ∈ T0N , with arbitrary submanifold

N ⊂ C ⊂ IRd+1 such that (0, v) ∈ TN .

Definition: A Lorentzian metric g and a LC structure p 7→ Cp on a given manifold

M are said to be locally compatible, iff ∀p ∈ intM and Cp ⊃ φp(N) ∼= N it holds:

gp(V (p), V (p)) = 0 ⇔ V (p) ∈ Tpφp(N) . (2.5)

Obviously (2.5) just means that locally at any vertex the cone determines the charac-

teristic null directions in the tangent space.

On the other hand, the cone structure poses an equivalence relation on Lorentzian

metrics which are compatible with the LC structure. Given any such metric g, the cor-

responding equivalence class [g] is the conformal class of g. We summarize the existence

and uniqueness result as follows:

Proposition 2: Given a strong LC structure on a (CAT) manifold,

(i) there always exist a (CAT−1) Lorentzian metric g on M compatible with the LC struc-

ture.

(ii) the conformal class [g] of LC compatible metrics is uniquely determined by the LC

structure.

The existence of a conformal Lorentzian metric is guaranteed by a strong LC structure,

but not by a weak one. However, since conditions 2.7 needs only the existence of the

tangent bundle of Cp, uniqueness is assured already by a differentiable weak LC structure.

Although at each p ∈ intM a CAT strong LC structure on M admits a conformal class

[g] of CAT−1 Lorentzian metrics g with characteristic directions in TpM tangential to Cp,

away from the vertex p the cones of the LC structure need not at all be compatible with

the null structure of any conformal metric [g]. This reflect the fact that, apart from its

local vertex structure, a strong LC structure is still much more flexible than a conformal

structure. For any q 6= p the tangent directions given by TqCp need a priori not be related

to tangent directions of null curves of g, since the cone (or its thickening) at p is in general

unrelated to that at q. The need for compatibility conditions between cones at different

points motivates the introduction of some of the causality structures in open regions of

M introduced later in the following section.

2.2 Causality on topological manifolds

Given a (weak or strong) LC structure one wants to know first of all under which condi-

tions, for given p ∈ intM an exterior and interior of the cone can be distinguished within

the complement M −Cp. This problem is the global analogue of the local one which was

answered by Proposition 1 and Theorem 1 above.

Proposition 3: Assume that at p ∈ intM there are open (CAT) submanifolds Tp

and Ep such that the interior of M decomposes into the disjoint union intM = Cp
◦∪Tp

◦∪Ep.

Assume ∃ k ∈ IN0 : Πk(Tp) 6= Πk(Ep). Then Tp and Ep can be topologically distinguished.

Proof: intM − Cp = Tp
◦∪Ep, and homotopy groups are topological invariants. �

In particular the conditions of Proposition 3 apply for d + 1 > 2 in particular to all

manifolds with the following topological structure:
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Example 1: Let in any dimension d := dimM−1 > 0 at any p ∈ intM be |Π0(Tp)| =
2 and Πd−1(Ep) = Πd−1(S

d−1), for d > 1 be Πd−1(Tp) = 0 and |Π0(Ep)| = 1, For d = 1 be

Πd−1(Tp) = Πd−1(Ep) = Π0(S
0), i.e. |Π0(Tp)| = |Π0(Ep)| = 2, and in dimension d = 0 be

Tp = Ep = ∅ at any p ∈ intM . Then in particular Tp 6∼= Ep ⇐⇒ d + 1 > 2. The open

exterior Ep and the open interior Tp of the cone Cp at any interior point p ∈ intM are

topologically distinct for d > 1, indistinguishable for d = 1, and empty for d = 0.

In the case of Example 1, Cp divides M − Cp in three open submanifolds, a non-

contractable exterior Ep, plus two contractable connected components of Tp =: Fp ∪Pp,

the future Fp and the past Pp with ∂Fp = C +
p := φpC + and ∂Pp = C −

p := φpC −

respectively. This rises also the question if and how Fp and Pp can be distinguished.

Let M be differentiable and τ be any vector field M → TM such that at any p ∈ intM

its orientation agrees with that of φp(a). Such a orientation vector field comes naturally

along with a (CAT−1) Z2-connection on M which allows to compare the orientation τ(p)

at different p ∈ intM . Given a strong LC structure on M , the Z2-connection is in fact

provided via continuity of p 7→ Tpφp(a). Then τ is tangent to an integral curve segment

through p from Pp to Fp. In particular, Fp and Pp are distinguished from each other

by a consistent τ -orientation on M .

If M is not differentiable, in order to distinguish continuously Pp from Fp on intM

it remains just to impose a topological Z2-connection on intM a fortiori.

In order to obtain a more specific causal structure it remains to identify natural con-

sistency conditions for the intersections of cones of different points. In order to define

topologically timelike, lightlike, and spacelike relations, and a reasonable causal comple-

ment, we introduce the following causal consistency conditions on cones.

Definition 8: M is (locally) cone causal or C-causal in an open region U , if it carries a

(weak or strong) LC structure and in U the following relations between different cones in

intM hold:

(1) For p 6= q one and only one of the following is true:

(i) q and p are causally timelike related, q � p : ⇔ q ∈ Fp ∧ p ∈ Pq (or p� q)

(ii) q and p are causally lightlike related, q / p : ⇔ q ∈ C +
p − {p} ∧ p ∈ C −

q − {q} (or

p C q),

(iii) q and p are causally unrelated, i.e. relatively spacelike to each other, q ./ p : ⇔ q ∈ Ep

∧ p ∈ Eq.

(2) Other cases (in particular non symmetric ones) do not occur.

M is locally C-causal, if it is C-causal in any region U ⊂ M . M is C-causal if conditions

(1) and (2) hold ∀p ∈ C .

Let M be C-causal in U . Then, q � p ⇔ ∃r : q ∈ Pr ∧ p ∈ Fr, and q / p ⇔
∃r : q ∈ C +

r ∧ p ∈ C −
r .

If an open curve IR 3 s 7→ c(s) or a closed curve S1 3 s 7→ c(s) is embedded in M , then

in particular its image is im(c) ≡ c(IR) ∼= IR or im(c) ≡ c(S1) ∼= S1 respectively, whence

it is free of self-intersections. Such a curve is called spacelike : ⇔ ∀p ≡ c(s) ∈ im(c)∃ε :

c|]s−ε,s+ε[−{s} ∈ Ec(s), and timelike : ⇔ ∀p ≡ c(s) ∈ im(c)∃ε : c|]s−ε,s+ε[−{s} ∈ Tc(s).

Note that C-causality of M forbids a multiple refolding intersection topology for any

two cones. In particular along any timelike curve the future/past cones do not intersect,
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because otherwise there would exist points which are simultaneously timelike and lightlike

related. Continuity then implies that future/past cones in fact foliate the part of M which

they cover. Hence, if there exists a fibration IR ↪→ intM Σ, then C-causality implies that

the future/past cones foliate in particular on any fiber. In fact, given a fibration, one

could define also a weaker form of causality just by the foliating property of all future/past

cones on each fiber. (Physically this situation corresponds to ultralocal classical clocks.

Quantum uncertainty of the fiber would require to take appropriate ensemble averages

over some bundle of neighboring fibers which then contains in particular spacelike related

vertices on the fibers of the bundle. Then the corresponding future or past cones intersect

for sure, and even timelike related ones of different fibers may intersect !) C-causality

however requires more, namely the future/past cones of all timelike related vertices should

be non-intersecting, not only those in a particular fiber.

Therefore C-causality allows also a reasonable definition of a causal complement.

Definition 9: For any open set S in a C-causal manifold M the causal complement is

defined as

S⊥ :=
⋂

p∈clS

Ep, (2.6)

where clS denotes the closure in the topology induced from the manifold. Although the

causal complement is always open, it will in general not be a contractable region even if

S itself is so.

Assume p and q are timelike related, p ∈ Pq and q ∈ Fp. K q
p := Fp ∩ Pq is the

bounded open double cone between p and q. Given any bounded open K such that

∃p, q ∈M : K = Fp∩Pq, we set i+(K ) := {q}, i−(K ) := {p}, and i0(K ) := C +
p ∩C −

q .

For any K q
p ⊂M let clc(K q

p ) be its causal closure.

Since C-causality prohibits relative refolding of cones, it also ensures that (K q
p )⊥⊥ =

K q
p , i.e. the causal complement is a duality operation on double cones.

The open double cones of a C-causal manifold M generate a topology, called the

double cone topology which is a genuine generalization of the usual Alexandrov topology

for strongly causal space-times. For strongly causal space-times the Alexandrov topology

is equivalent to the manifold topology [46, 47]. When M fails to be locally causal the

double cone topology may be coarser than the manifold topology.

Let us discuss now possible natural relations that can appear between two double

cones K1 and K2 of a C-causal manifold. First there is the case K1 ∩ K2 = ∅ which

corresponds to causally unrelated sets. For K1 ∩K2 6= ∅, the intersection is such that

K1 ∪K2 −K1 ∩K2 is either given by two disconnected pieces or it is connected. In the

latter case we distinguish whether ∂K1 ∩ ∂K2 is empty or not. It is in the former case

that one of K1 and K2 will be contained in the other.

Local C-causality does a priori not preclude other more pathological possibilities. How-

ever it is possible to define in a purely topological manner more refined causality notions.

Definition 10: Let M be a C-causal manifold.

(i) M is globally hyperbolic : ⇔ clcK q
p compact ∀p, q ∈M

(ii) M is causally simple : ⇔ clcK q
p closed ∀p, q ∈M

(iii) M is causally continuous : ⇔ M is distinguishing and both F : p 7→ Fp and

P : q 7→ Pq are continuous
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(iv) M is stably causal : ⇔ M admits a C0 function f : M → IR strictly monotoneously

increasing along each future directed nonspacelike curve (global time function)

(v) M is strongly causal : ⇔ the topology generated by {K q
p }p,q∈M is equivalent to the

manifold topology of M

(vi) M is distinguishing : ⇔ Fp = Fq ⇒ p = q ∧Pp = Pq ⇒ p = q

(vii) M is causal : ⇔ every closed curve in M is not nonspacelike

(viii) M is chronological : ⇔ every closed curve in M is not timelike

If a manifold carries a Lorentzian metric, we saw in Section 2.1 above that this is

locally compatible with a strong LC structure. Beyond that, it is an interesting question

under which conditions a Lorentzian metric is compatible with some LC structure. The

Minkowski metric η is compatible with the cone C in the sense that ηx(v, v) = 0 ⇔
(x, v) ∈ TC :=

⋃
y∈C TyC where TyC :=

⋃
y∈N⊂C TyN ⊂ IRd+1 and the latter union

is over all (differentiable) 1-dimensional submanifolds N ⊂ C passing through y, with

all their tangent spaces embedded as linear submanifolds with common origin within

the common embedding space IRd+1. Hence, for y 6= 0, the fibers TyC ∼= IRd are all

usual isomorphic tangent spaces, while the only non-standard fiber T0C ∼= C ⊂ IRd+1

reproduces the d-dimensional cone itself, which is the local model of its own singularity.

Definition: A Lorentzian metric g and a LC structure p 7→ Cp on some manifold M

are said to be compatible, iff ∀q ∈ intM it holds:

gq(V (q), V (q)) = 0 ⇔[
∀p ∈M : q ∈ Cp ⇒ V (q) ∈ TqCp := (φp)∗Tφp

−1(q)C =
⋃

φp
−1(q)∈N⊂C Tqφp(N)

]
,(2.7)

where the latter union is over all (differentiable) 1-dimensional submanifolds N ⊂ C pass-

ing through φp
−1(q), and the latter identity holds with tangent push forward (φp)∗TyN :=

Tφp(y)φp(N).

With (2.7) the cones are the (conformally) characteristic null surfaces of the Lorentzian

metric. As pointed out above, (2.7) does not hold in general. However one might search

for sufficient and necessary causality conditions such that this compatibility holds. A

systematic investigation of this point is an interesting topic for further investigations. Let

us here just assure the correspondence of the causality notions of Def. 10 to the usual

ones in the case of a Lorentzian space-time.

Theorem 2: Let M carry a smooth Lorentzian metric g. Then the Lorentzian metric

determines a C-causal structure. If a C-causal structure of M is related to a Lorentz

metric, then the definitions (i)-(viii) agree with the standard definitions and the following

chain of implications of properties of M holds: globally hyperbolic ⇒ causally simple

⇒ causally continuous ⇒ stably causal ⇒ strongly causal ⇒ distinguishing ⇒
causal ⇒ chronological.

Proof: Given a smooth Lorentzian metric g the cones determined by the null structure

[g] respect the relations of Def. 8, because otherwise there would exist some singularities.

For (v) in the case of Lorentzian manifolds see [47], for the other notions and for the chain

of implications see [48]. �
Finally let us define a condition which excludes the existence of singularities or internal

boundaries within the future and past cones.
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Definition 11: Let M carry a (weak or strong) LC structure.

(i) M is precausal in an open region U ⊂M , if the d+1-parameter CAT family {φp}p∈U of

CAT homeomorphisms φp : IRd+1 ⊃ V → U is such that at any p ∈ U it is Cp|U = φpC |V ,

and any CAT submanifold of Cp or (M −Cp)∩U is a CAT homeomorphic image of C or

(IRd+1 − C ) ∩ V respectively. M is locally precausal iff it is precausal in any open region

U ⊂M .

(ii) M is precausal if it is locally precausal such that in the CAT d+ 1-parameter family

{φp}p∈U any CAT homeomorphism extends also to a homeomorphism of the interior

φp : E → Ep.

2.3 Causal index sets and diffeomorphisms

Let us now define the index sets which will be used in our nets of algebras. The natural

numbers IN are the most common index set for any countable set on which they induce

then a canonical order relation. However, in the following we consider more general index

sets which need not be countable.

Definition: A net index set is an index set I (i) with a partial order ≤, (ii) with a

sequence of Ki ∈ I, i ∈ IN, such that ∀K ∈ I∃j ∈ IN: K ≤ Kj, and (iii) such that each

bounded J ⊂ I has a unique supremum sup J ∈ I.
Remark 1: If I is totally ordered (iii) is satisfied trivially.

Remark 2: By (ii) a net index set is infinite unless ∃j ∈ IN: Ki = Kj ∀i ≥ j.

Definition: A causal disjointness relation in a net index set I is a symmetric relation

⊥ such that

(i) K1 ⊥ K0 ∧ K2 < K1 ⇒ K2 ⊥ K0,

(ii) for any bounded J ⊂ I: K0 ⊥ K ∀K ∈ J ⇒ K0 ⊥ sup J ,

(iii) ∀K1 ∈ I ∃K2 ∈ I: K1 ⊥ K2.

A causal index set (I,⊥) is a net index set with a causal disjointness relation ⊥.

Definition: Let M be infinite with causal complement ⊥. M is ⊥-nontrivially in-

ductively covered, iff ∃ sequence of nonempty Ki ⊂ M , i ∈ IN, mutually different with

(Ki)
⊥ 6= ∅ such that

⋃∞
i=1Ki = M .

Example 2: Any conformal class of a Lorentzian metric, which is globally hyperbolic

without any singularities determines such a causal structure. In this case the compact

open double cones form a basis of the usual Euclidean d+1 topology. Each open compact

double cone K is conformally equivalent to a copy of Minkowski space. Consider a spatial

Cauchy section Σ of M and a geodesic world line p : τ →M intersecting Σ at p(0), where

τ is the proper time of the observer. Now for any τ > 0 the causal past of p(τ) intersects

Σ in an open set Oτ . Then these open sets are totally ordered by their nested inclusion

in Σ, and their order agrees also with the total order of worldline proper time,

Oτ1 ⊂ Oτ2⇔τ1 < τ2. (2.8)

This is the motivation to consider the partial order related to the flow of time and the

one related to enlargement in space to be essentially the same, such that in the absence

of an a priori notion of a metric time, the nested spatial inclusion will provide a partial
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order substituting time. (Of course this is in essence similar to the old idea in cosmology

of time given by the volume of a closed, expanding universe.)

Consider now a double cone K in M with O := K ∩ Σ and ∂O = i0(K ) and a

diffeomorphism φ in M with pullbacks φΣ ∈ Diff(Σ) to Σ and φK ∈ Diff(K ) to K . If

φ(K ) = K , it can be naturally identified with an element of Diff(K ). (φ = idM−K is a

sufficient but not necessary condition for that to be true.) If in addition φ(Σ) = Σ then

also φ(O) = O, and φ|O is a diffeomorphism of O.

Let us now consider a 1-parameter set of double cones {Kp} sharing 2 common null

curve segments n± ∈ ∂Kp from i±(Kp) respectively to i ∈ i0(Kp) which they intersect

transversally in Σ. Let such cones be parametrized by a line c in Σ starting (transversally

to n) at i to some endpoint f on ∂Σ (at spatial infinity) such that p is an interior point

of Op := Kp ∩ Σ. Then we call the limit W (n±, c) := limp→f Kp the wedge in the surface

through n± and c. Note that in the usual (say Minkowski) metric case a wedge has a

quite rigid structure, because c has a canonical location in a surface spanned by n±. The

present diffeomorphism invariant analogue is of course much less unique in structure.

3. Cosmological application I:

quantum general relativity

This section deals with the application of the general, geometry-independent definitions

of causal structure of the previous section.

Sect. 3.1. introduces an axiomatic framework of algebraic quantum field theory

(AQFT) adapted to general relativistic quantum (field) theories. Sect. 3.2. then dis-

cusses quantum geometry within this setting.

3.1 Algebraic QFT on manifolds

Clearly QFT on a globally hyperbolic space-time manifold satisfies isotony (N1), covari-

ance (N2), causality (C), additivity (A) and existence of a (state dependent GNS) vacuum

vector (V). More particular on Minkowski space there is is a unique Poincare-invariant

state ω such that there is a translational subgroup of isometries with spectrum in the

closure of the forward light cone only. However there is no reason to expect such features

in a more general context. However, an invariant GNS vacuum vector Ω still exists for a

globally hyperbolic space-time, although in general it depends on the choice of the state ω.

Hence we will now generalize the axioms of AQFT from globally hyperbolic space-times

to differentiable manifolds.

For a given QFT on manifolds, say the example of quantum gravity examined below,

it remains to check which of the generalized axioms will hold true.

3.1.1 General axioms for QFT on a differentiable manifold

On a differentiable manifold M part of the AQFT structure can be related to the topo-

logical structure of M . The following AQFT axioms are purely topological and should
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hold on arbitrary differentiable manifolds. Let M be a differentiable manifold with addi-

tional structure s (which may be empty) and Diff(M, s) denote all diffeomorphisms which

preserve s. A Diff(M, s)-invariant algebraic QFT (in the state ω) can be formulated in

terms of axioms on a net of ∗-algebras A(O) (together with a state ω thereon). It should

at least satisfy the following axioms:

N1 (Isotony):

O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2) ∀O1,2 ∈ Diff(M, s) (3.1)

N2 (Covariance):

Diff(M, s) 3 g ∃7→U(g) ∈ U(Diff(M, s)) : A(gO) = U(g)A(O)U(g)−1 . (3.2)

(N1) and (N2) are purely topological, involving only the mere definition of the net. These

axioms make sense even without a causal structure (see also [5]).

If A(O) is a C∗-algebra with norm || · ||, it makes sense to impose the following

additional axioms:

A (additivity):

O = ∪jOj ⇒ A(O) = cl||·|| (∪jA(Oj)) . (3.3)

V (Invariant Vacuum Vector): Given a state ω, there exists a representation πω on a

Hilbert space Hω such that

∃Ω ∈ Hω, ||Ω|| = 1 :

(cyclic) (∪OR(O)) Ω
dense
⊂ Hω

(invariant) U(g)Ω = Ω , g ∈ Diff(M, s) . (3.4)

Note: For any ∗-algebra, the representation πω is given by the GNS construction, Hω is

the GNS Hilbert space. Properties of Ω are induced by corresponding properties of the

state ω. The main issue to check is the invariance under a unitary representation U of

Diff (M,s).

3.1.2 Axioms for QFT on a manifold with cone causality

With a notion of causality on a differentiable manifold M as defined in the previous

section, the algebraic structure of a QFT should be related to the causal differential

structure of M by further axioms abstracted from the space-time case. In this case it is

natural to consider nets of von Neumann algebras. On a causal differential manifold M

(in the sense defined above) the algebraic structure of a QFT should satisfy the following

axioms which require the notion of a causal complement. Let M be a causal differentiable

manifold with additional structure s (which may be empty) and Diff(M, s) denote all

differentiable diffeomorphisms which preserve s, where s is at least a causal structure,
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eventually with some additional structure s′. A Diff(M, s)-invariant algebraic QFT in the

state ω is a net of von Neumann-algebras R(O) with a state ω satisfying the following

axioms:

C (causality):

O1 ⊥ O2 ⇒ R(O1) ⊂ R(O2)
′ . (3.5)

CA (causal additivity):

O = ∪jOj ⇒ R(O) = (∪jR(Oj))
′′ . (3.6)

Remarks: In the case that the net has both inner and exterior boundary, (3.5) had been

weekened in [5] to a generalization of Haag duality on the boundary of the net. Here we

do not assume a priori the existence of such a boundary of the net. However an example

of quantum geometry with such a boundary structure is discussed below.

Given a net of C∗ algebras consistent with a norm || · ||, it made sense to impose (A)

above. If the algebras are in particular also von Neumann ones (A) should be sharpened

to (CA). In the general case of ∗-algebras (not necessarily C∗ ones) the algebraic closure

has no natural topological analogue, and hence there is no obvious definition of additivity.

Therefore in [5] neither (A) nor (CA) was assumed.

3.2 Quantum geometry

On a region causally exterior to a topological horizon H , on any d-dimensional spatial

slice Σ, there exists a net of Weyl algebras for states with an infinite number of intersection

points of edges and transversal (d − 1)-faces within any neighbourhood of the spatial

boundary H ∩ Σ∼=S2.

Σ be a spatial slice. C-causality constrains the algebras localized within Σ. On Σ it

should hold

O1 ∩ O2 = ∅ ⇒ [A(O1),A(O2)] = 0. (3.7)

A (spin network) state ω over the algebra A(Σ) may be defined by a closed, oriented

differentiable graph γ embedded in Σ, with an infinite number of differentiable edges

e ∈ E intersected transversally by a differentiable d − 1-dimensional oriented surface S

at a countable of intersection vertices v ∈ V . Let Cγ ∈ Cylr be a C∞ Cylinder function

with respect to an SO(d) holonomy group on γ, i.e. on each closed finite subgraph γ′ ⊂ γ

it is Cγ′ := c(g1, . . . , gN) where gk ∈ SO(d), and c is a differentiable function. With test

function f the action of a derivation XS,f on Cylr is defined by

XS,f · Cγ :=
1

2

∑
v∈V

∑
ev∈E:∂ev3v

κ(ev)f
i(v)X i

ev
· c, (3.8)

where κ(ev) = ±1 above/below S (for the following purposes we may just exclude the

tangential case κ(ev) = 0) and X i
ev
· c is the action of the left/right invariant vector

field (i.e. ev is oriented away from/towards the surface S) on the argument of c which

corresponds to the edge ev. Let Der(Cylr) denote the span of all such derivations.
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Here the classical (extended) phase space is the cotangent bundle Γ = T ∗C over a

space A of (suitably regular) finitely localized connections. Let δ = (δA, δE) ∈ TeΓ. With

suitable boundary conditions, a (weakly non-degenerate) symplectic form Ω over Γ acts

via

Ω|(Ae,Ee) (δ, δ′) :=
1

`2

∫
Σ

Tr [∗E ∧ A′ − ∗E ′ ∧ A] . (3.9)

After lifting from C to Γ, the cylinder functions q ∈ Cylr serve as (gauge invariant)

classical elementary configuration functions on Γ. The derivations p ∈ Der(Cylr) serve

as classical elementary momentum functions on Γ. They are obtained as the Poisson-Lie

action of 2-dimensionally smeared duals of densitized triads E. Cylr × Der(Cylr) has a

Poisson-Lie structure

{(q, p), (q′, p′))} := (pq′ − p′q, [p, p′]), (3.10)

where [p, p′] denotes the Lie bracket of p and p′. An antisymmetric bilinear form on

Cylr ×Der(Cylr) is given by

Ω0

(
(δq, δp), (δ

′
q, δ

′
p)
)

:=

∫
Cγ∪γ′/Gγ∪γ′

dµγ∪γ′ [pq
′ − p′q] , (3.11)

where q, q′ ∈ Cylr have support on γ resp. γ′, with pq′ − p′q ∈ Cylr integrable over

Cγ∪γ′/Gγ∪γ′ with measure dµγ∪γ′ .

On TeΓ, the symplectic form Ω yields functions of the form Ω((δA, δE), ·). Canonical

quantization then associates to any function Ω(f, ·) a selfadjoint operator Ω̂(f, ·) and a

corresponding unitary Weyl element W (f) := eiΩ̂(f,·), both on some extended Hilbert

space. With multiplication W (f1)W (f2) := eiΩ(f1,f2)W (f1 + f2), and conjugation ∗ :

W (f) 7→ W (−f), the Weyl elements generate a ∗-algebra. A norm on Γ is defined

by ‖f‖ := 1
4
supg 6=0

Ω(f,g)
<g,g>

. The C∗-closure under the sup-norm then generates a C∗-

algebra CCR(W (f),Ω). With regular Ω this CCR Weyl algebra is simple, i.e. there is

no ideal. Observables of quantum 3-geometry are then the selfadjoint elements within

a gauge and 3-diffeomorphism invariant C∗-subalgebra Aγ ⊂ C∗(W (f), f ∈ Γ). In a

gauge and 3-diffeomorphism invariant representation of Aγ, typical observables in are

represented by configuration multiplication operators Cγ ∈ Cylr on Hilbert space Hγ, and

by gauge-invariant and 3-diffeomorphism invariant combinations of derivative operators

XS,f ∈ Der(Cylr), like e.g. a certain quadratic combination which yields the area operator.

For each finite γ′ ⊂ γ, the sets E(γ′) and V (γ′) of edges resp. vertices of γ′ are

finite. Then the connections Cγ′ =
∏

e∈E(γ′)Ge
∼= GE(γ′) and the gauge group Gγ′ =∏

v∈V (γ′)Gv
∼= GV (γ′) on γ′ inherit a unique measure from the measure on G (for compact

G the Haar measure). The action of Gγ′ on Cγ′ is defined by (gA)e := gt(e)Aeg
−1
s(e) where s

and t are the source and target functions E(γ′) → V (γ′) respectively. This action gives

rise to gauge orbits and a corresponding projection Cγ′ Cγ′/Gγ′ . The projection induces

the measure on Cγ′/Gγ′ . Bounded functions w.r.t. to that measure define then the gauge

invariant Hilbert space Hγ′ := L(Cγ′/Gγ′).

However, over finite graphs, all is still QM rather than QFT. In order to obtain an

infinite number of degrees of freedom on any finite localization domain which includes the
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inner boundary Sd−1 (the intersection Sd−1 of H and Σ), let Sd−1 be intersected by an

infinite number of edges of some graph γ in the exterior spatial neighborhood of H . In the

3+1-dimensional case, evaluation of the area operator on the puncture of the boundary S2

from edge p yields a quantum of area proportional to jp(jp +1) for edge p carrying a spin-

jp representation of the group G. Since S2 is compact the punctures should have at least

one accumulation point. Hence for typical configurations in the principal representation,

near that accumulation point the area will explode to infinity. When almost all punctures

are located in arbitrary small neighborhoods of a finite number n of accumulation points,

corresponding states represent quantum geometries of a black hole with n stringy hairs

extending out to infinity. In particular, the n = 1 case was discussed in more detail in [9].

4. Homogeneous structures

4.1 Homogeneous manifolds

A Hausdorff (i.e. T2-strongly separating) topological or differentiable manifold M is

topologically homogeneous, per definition, iff all local neighborhoods of all points are

homeomorphic. This means in particular that each point p ∈ M has to be an interior

point p ∈ intM . In other words, the manifold is already given by the set of its interior

points, M = intM , i.e. the manifold is either entirely open or closed without boundary,

M ∩ ∂M = ∅. In a homogeneous topological manifold any point contains an open region,

i.e. a neighborhood homeomorphic to an open ball of dimension dimM .

Note that a homogeneous Cr-differentiable structure on a closed manifold need not be

Cr+1-homogeneous, while the vice versa is always true.

A geometry (of arbitrary signature) is homogeneous iff the intrinsic curvature at all

points is the same, which is the case if the connection is a homogeneous one.

The homogeneity of a manifold M can equivalently be expressed by the existence of

a transitive group action on the manifold. A manifold is characterized by its homeo-

morphism group. If M is homogeneous, any two points are connected by a local home-

omorphism, and the (local) homeomorphism group HomM acts on the entire manifold.

(Note: Here we do not consider global homeomorphisms since this would be a topic in

its own.) If M contains boundary points, it decomposes non trivially into interior intM

and collared boundary IR+ × ∂M , which intersect in an open tube IR × ∂M . The local

topological model of a collared boundary point reduces here essentially to the half line

IR+ (i.e. a 1-valent vertex). The homeomorphism group HomM then decomposes into

homomorphisms group Hom(intM) of the interior and homeomorphisms of the collared

boundary Hom(IR+ × ∂M). Hom(intM) acts transitively on intM , whence intM is ho-

mogeneous. Besides, Hom(intM) and Hom(IR+ × ∂M) both act also non-transitively on

the collared boundary which determines the inhomogeneous part of the global topology.

Similarly for a more general stratifiable variety V , the homeomorphism group contains

the subgroup Hom(intV ) acting transitively on its interior, which is the piece made up by

all points with open neighborhoods homeomorphic to the open cell of generic dimension.

∂V := V − intV can then be collared within V . The resulting collaring will then consists
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from vertices of different valences. In particular 0-valent vertices then belong to points of

∂V which are not limit points of intV and 1-valent vertices to traditional boundary points,

2-valent vertices will play no role in the topological category, but appear in differentiable

categories within kinks of V , and similarly, vertices of valence n ≥ 3 appear at the join

of n leaves within V . Again the collaring of ∂V contains the inhomogeneous part of the

global topology.

Topological spaces with homogeneous (Hausdorff) dimension are invariant under rather

general homeomorphisms. Restricting to the interior always yields topological homogene-

ity.

However, if the manifold carries more structure, homeomorphisms have to preserve not

only the local topology but also the additional structure. So, a Cr-differential structure

on a manifold restricts the homeomorphism to Cr-diffeomorphisms. Similarly, a causal

structure on a manifold restricts its homeomorphisms to those which preserve the causal

structure.

Definition: A Riemannian manifold (M, g) (of arbitrary signature) is a manifold M

equipped with a symmetric bilinear C∞ section g : M → T0
2M called metric. Unless

specified otherwise the metric g will always be assumed to be non-degenerate.

A diffeomorphism of a Riemannian manifold (M, g) is a structure homeomorphism of

the latter, iff it is an isometry.

The very fact that a given diffeomorphism χ ∈ Diff(M) may be an isometry on some

metric but not on another one is the reason why the action of Diff(M) is not free on the

space Met(M) of C∞-metrics on M , whence Geom(M) := Met(M)/Diff(M) is in general

not a manifold.

Structure preserving homeomorphisms form a group. A structure s on a manifold

M is homogeneous, iff the structure preserving homeomorphisms group Hom(M, s) acts

transitively on M . For a (pseudo-)Riemannian metric, s = g, the homeomorphism group

Hom(M, g) is the isometry group.

Definition: A Riemannian manifold (M, g) is called homogeneous, whenever M is ho-

mogeneous with a corresponding group G having a transitive realization τ(G) ⊂ Diff(M)

which leaves g invariant, i.e.

gχ(p) = gp ∀p ∈M ∀χ ∈ τ(G). (4.1)

The classification of local homogeneous manifolds of given dimension is a clue to a

systematic understanding of their possible deformation into each other.

Since the local isometry subgroups of a local homogeneous Riemannian manifold are

Lie groups, it is useful, before trying to classify the homogeneous manifolds, to find first

all possible contractions and, more generally, all possible limit transitions between real (or

complex) Lie algebras of fixed dimension, and to uncover the natural topological structure

of the space of all such Lie algebras.

Once the structure of the classifying space Kn is known, this information can be used

as a first ingredient to construct the space of local Riemannian n-manifolds. This is

demonstrated explicitly for n = 3 below.
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4.2 Local homogeneous geometries

This section reviews local features of homogeneous geometries of general signature Rie-

mannian type. Here we want to investigate the data which characterizes the local structure

of a homogeneous Riemannian or pseudo Riemannian manifold (M, g). If we consider for

arbitrary dimension n the different possible signatures modulo the reflection g → −g, then

1+[n
2
] different signature classes are distinguished by the codimension s = 0, . . . , n− [n

2
] of

the characteristic null hypersurface in the tangent space. For Lorentzian signature s = 1

the latter is an (n−1)-dimensional open double cone at the base point, in the Riemannian

case s = 0 it is just the base point itself.

Per definition, a homogeneous manifold admits a transitive action of its isometry

group. Let us restrict here to the case where it has even more a simply transitive subgroup

of the isometry group. In this case we can solder the metric to an orthogonal frame

spanned by the Lie algebra generators ei in the tangent space, i.e.

gµν = ea
µe

b
νgab (4.2)

where ea = ea
µdx

µ = gaiei, ei = eµ
i

∂
∂xµ , gabgij = δa

i δ
b
j , with the constant metric

(gab) =


ε1e

s 0 0

0 ε2e
s+w−t 0

0 0 ε3e
s−t

 . (4.3)

Here s fixes the overall scale, while t and w parametrize the anisotropies related re-

spectively to the e1 and e2 direction (maintaining isotropy in the respective orthogonal

planes).

The local data can be rendered in form of (i) the local scales of (4.3), (ii) the covariant

derivatives

Dek = ek
i;je

iej := ek
α;βdx

αdxβ (4.4)

of the dual generators ek in the cotangent frame, (iii) the corresponding Lie algebra

[ei, ej] = Ck
ijek, (4.5)

and (iv) the orientation of the n − s-dimensional null hyperspace in the tangent space.

For the Lorentzian case s = 1, this orientation is described by the future oriented normal

vector n along the central axis of the double cone,

n = naea, (4.6)

where its triad frame components na have to be coordinate independent, since the manifold

is assumed to be homogeneous.

Let us consider now n = 3. In this case, there are no further signature cases besides

the Riemannian and Lorentzian ones.

In the Riemannian case, the datum (iv) is trivial. For this case we give the complete

classification of local homogeneous 3-spaces with some isometry subgroup in K3 below.
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Here, the Kantowski-Sachs (KS) spaces, here the only exception not admitting a simply-

transitive subgroup of their isometry group, can be obtained as a specific limits of Bianchi

IX spaces. The global geometrical correspondence of such a limit is given by a hyper-cigar

like 3-ellipsoid of topology S3, stretched infinitely long to become a hyper-cylinder S2×IR.

So finally we will have a classification of all local homogeneous Riemannian 3-manifolds.

For the 3 special cases na = δa
i , i = 1, . . . , 3 an explicit description of the Lorentzian 3-

spaces of nonflat Bianchi type has been given in [15]. However a complete classification of

all homogeneous Lorentzian 3-spaces need to control systematically the effect of different

orientations (4.6). Presently, this problem still remains to be solved.

We proceed as follows: Sect. 4.2.1 derives and describes the classifying spaces (Kn, κn)

of n-dimensional Lie algebras. An index function J : Kn → IN0 is related naturally to

the topology κn. Using the index J , the topology κ3 is described explicitly for both, the

real and complex case. Sect. 4.2.2 relates the topology κn to the Zariski topology, and

explains, via Lie algebra cohomology, why semisimple Lie algebras, and more generally

all rigid ones, do not admit deformations in the category given by Kn. Sec. 4.2.3 then

reviews the classification of all local homogeneous Riemannian 3-manifolds according to

the algebraic structure of the Ricci curvature, and gives a comparison with the partial

results for the 3 already mentioned cases of Lorentzian signature from [15].

4.2.1 Classifying spaces of local isometries

Since the local isometry subgroups of a local homogeneous manifold are Lie groups, it

is useful, before trying to classify the homogeneous manifolds, to find first all possible

contractions and, more generally, all possible limit transitions between real (or complex)

Lie algebras of fixed dimension, and to uncover the natural topological structure of the

space of all such Lie algebras. The topology is given by the algebraic properties of the

Lie algebras. The space W n of all structure constants of real n-dimensional Lie algebras

carries the subspace topology induced from the Euclidean IRn3

(see [49]). The quotient

topology κn, obtained from this topology w.r.t. equivalence by GL(n) isomorphisms,

renders the space Kn of all n-dimensional Lie algebras into a T0 topological space, which

is not T1 for n ≥ 2. This non-T1 topology has also been described in [50]. In Sect. 3 below,

we derive it with some new method, employing an index function on the algebra. This

approach is somehow inspired by Morse theory. For n ≥ 2, the space Kn contains some

non-closed point A, which has a special limit, to another point B. The inverse of such

a transition from A to B is a deformation of the algebra of B into the algebra A. Note

that, unlike in [20, 19], here transitions are defined to include also trivial constant limits.

This has the advantage that also a trivial contraction (e.g. in the sense of Inönü-Wigner)

is a transition. This definition is fully compatible with a partial order A ≥ B, which is

taken to be the specialization order already used in [20, 19]. This choice of partial order

is naturally related to a Morse like potential J , decomposing Kn into subsets of different

level.

A (real) (finite-dimensional) Lie algebra is a (real) vector space V of dimension n,

equipped with a skew symmetric bilinear product [·, ·], satisfying the Jacobi condition

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for all x, y, z ∈ V . The evaluation of the Lie bracket
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[·, ·] on a complete set of basis vectors {ei}i=1,...,n yields a description of the Lie algebra by a

set of structure constants {Ck
ij}i,j,k=1,...,n from Eq. (4.5). Equivalently the endomorphisms

Ci := ad(ei), i = 1, . . . , n, from the adjoint representation ad : ei → [ei, ·], carry the

same information on the algebra. Note that this description is overcomplete: Due to its

antisymmetry, the Lie algebra is already completely described by the (n − 1) × (n − 1)-

matrices C<i>, i = 1, . . . , n, each with components Ck
ij j, k = 1, . . . , n− 1. But, as we will

see, also this description may still carry redundancies.

The bracket [·, ·] defines a Lie algebra, iff the structure constants satisfy the n{
(

n
2

)
+(

n
1

)
} antisymmetry conditions

Ck
[ij] = 0, (4.7)

and, corresponding to the Jacobi condition, the n ·
(

n
3

)
quadratic compatibility constraints

C l
[ijC

m
k]l = 0 (4.8)

with nondegenerate antisymmetric indices i, j, k.

Here we only deal with finite-dimensional Lie algebras. Hence the adjoint representa-

tion in End(V ) gives a natural associative matrix representation of the algebra, generated

by the matrices Ci. Using this representation, the associativity of the matrix product

Ci · Cj implies with [Ci, Cj] = Ck
ijCk that the Jacobi condition (4.8) is an identity fol-

lowing already from Eq. (4.7). However, if we do not use this extra knowledge from the

adjoint representation, then, for n > 2, Eq. (4.8) yields algebraic relations independent

of Eq. (4.7).

For n ≥ 2 there exists an irreducible tensor decomposition C = D + V , i.e.

Ck
ij = Dk

ij + V k
ij , (4.9)

where D is the tracefree part, i.e. tr(Di) := Dk
ik = 0, and V is the vector part,

V k
ij := δk

[ivj], (4.10)

given by vi := 2
1−n

tr(Ci), i = 1, . . . , n. The Lie algebra is tracefree (corresponding Lie

groups are unimodular) iff V ≡ 0, and it is said to be of pure vector type iff D ≡ 0. For

each n, there exists exactly one non-Abelian pure vector type Lie algebra, denoted by Vn.

For n = 3, the latter is the Bianchi type V , and the decomposition (4.9) is given by

Ck
ij = εijl(n

lk + εlkmam), Dk
ij = εijln

lk, vi = 2ai, (4.11)

where nij is symmetric and εijk is the usual antisymmetric tensor (cf. also [51]). Hence

for n = 3, the Jacobi condition (4.8) can be written as

nlmam = 0. (4.12)

These 3 nontrivial relations are in general independent of Eq. (4.7).

For arbitrary n, the space of all sets {Ck
ij} satisfying the Lie algebra conditions (4.7)

and (4.8) is a subvariety W n ⊂ IRn3

, with a dimension

dimW n ≤ n3 − n2(n+ 1)

2
=
n2(n− 1)

2
, (4.13)
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bounded by Eq. (4.7). For n ≥ 3 the inequality is strict, because (4.8) is non trivial in

general. For n = 3, the bound (4.13) reads dimW n ≤ 9, and taking into account the 3

additional relations of Eq. (4.12) actually yields dimW n = 6.

GL(n) basis transformations act on a given set of structure constants as GL(n) tensor

transformations:

Ck
ij → C̃k

ij := (A−1)k
h C

h
fg A

f
i A

g
j ∀A ∈ GL(n). (4.14)

On W n this yields a natural equivalence relation C ∼ C̃, defined by

Ck
ij ∼ C̃k

ij : ⇔∃A ∈ GL(n) : C̃k
ij = (A−1)k

h C
h
fg A

f
i A

g
j , (4.15)

with associated projection π to the quotient space,

π :

{
W n → Kn := W n/GL(n)

C 7→ [C]
(4.16)

dimW n > dimKn ≥ dimW n − n2. (4.17)

The upper bound in Eq. (4.17) is a strict one, because multiples of 1I ∈ GL(n) give

rise to equivalent points of W n. Note however that, while, for a given C ∈ W n, certain

transformations A ∈ GL(n) transform C 7→ C̃ 6= C, others keep C = C̃ invariant. The

latter transformations constitute the automorphism group Aut(C) ⊂ GL(n) of the adjoint

representation associated with C. In general, the GL(n) action on W n is not free, i.e.

there exist points C with dim Aut(C) > 0. So, Eqs. (4.13) and (4.17) provide only very

weak bounds on dimKn, which is still unknown for general n (in the complex case, a more

sophisticated upper bound estimate has been given in [52]). Note also that, e.g. for n = 3,

the lower bound is trivial, because dimW 3 − 32 = −3 < 0. Actually dim Aut(C) ≥ 3 for

all C ∈ W 3. In general, let us define the automorphic dimension of W n as

dimAut(W
n) := min

C∈W n
{dim Aut(C)}. (4.18)

For any A ∈ Kn, consider a 1-parameter family of neighbourhoods Uε(A) ⊂ H(A) within

the Hausdorff connected component H(A) of A. Let us define the dimension of the

infinitesimal Hausdorff connected neighbourhood of A as

dimH(A) := lim
ε→0

dimUε(A) (4.19)

Then,

dimW n = max
C∈W n

{dim π−1([C]) + dimH([C])}

≤ max
C∈W n

{dim π−1([C])}+ max
C∈W n

{dimH([C])}

= n2 − min
C∈W n

{dim Aut(C)}+ dimKn. (4.20)

Using (4.18), the lower bound of Eq. (4.17) can be sharpened yielding

dimW n > dimKn ≥ dimW n − n2 + dimAut(W
n). (4.21)
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Note that dim Aut(C) = dim Aut([C]) for any C ∈ W n. So dimAut(W
n) actually depends

only on Kn, and

dimAut(W
n) = min

C∈W n
{dim Aut([C])} = min

A∈Kn
{dim Aut(A)} =: dimAut(K

n) (4.22)

is the automorphic dimension of Kn.

The space Kn of isomorphism classes of n-dimensional Lie algebras is naturally ren-

dered a topological space (Kn, κn), where the quotient topology κn is generated by the

projection π from the subspace topology on W n ⊂ IRn3

. In order to describe (Kn, κn), let

us first recall the axioms of separation (German: Trennung; cf. e.g. [53]):

T0: For each pair of different points there is an open set containing only one of both.

T1: Each pair of different points has a pair of open neighborhoods with their intersection

containing none of both points.

T2 (Hausdorff): Each pair of different points has a pair of disjoint neighborhoods.

It holds: T2⇒T1⇒T0. Often it is more convenient to use the equivalent characterization

of the separation axioms in terms of sequences and their limits:

T0 ⇔ For each pair of points there is a sequence converging only to one of them.

T1 ⇔ Each constant sequence has at most one limit.

T2 ⇔ Each sequence, indexed by a directed partially ordered set, has at most one limit.

T1 is equivalent to the requirement that each 1-point set is closed. Actually, for n ≥ 2,

the topology κn is not T1, but only T0. This means that there exists some point A ∈ Kn,

which is not closed, or in other words, there is a non-trivial transition from A to B 6= A

in cl{A}. Non-trivial (A 6= B) transitions are special limits, which exist only due to the

non-T1 property of κn. Here transitions from A to B are defined by

A ≥ B : ⇔B ∈ cl{A}. (4.23)

By this definition, transitions are transitive and yield a natural partial order. A transition

A ≥ B is non-trivial, iff A > B.

In the following we want to construct a minimal graph for the classifying space

(Kn, κn). Let us associate an arrow A → B to a pair of algebras A,B ∈ Kn, with

A > B, such that there exists no C ∈ Kn with A > C > B. We call A the source and B

the target of the arrow A→ B. Now we define a discrete index function J : Kn → IN0 as

following: We start with the unique minimal element In, to which we assign the minimal

index J(In) = 0. Then, for i ∈ IN0, we assign the index J(S) = i+1 to the source algebra

S of any arrow pointing towards a target algebra T of index J(T ) = i, until, eventually

for some index J = imax there is no arrow to any target algebra T with J(T ) = imax. Let

us denote the subsets of all elements with index i as levels L(i) ⊂ Kn.

For n ≥ 2, Kn is directed towards its minimal element, the Abelian Lie algebra In,

constituting its only closed point. For n ≥ 3 there are points in Kn which are neither

open nor closed.

Open points correspond to locally rigid Lie algebras C, i.e. those which cannot be

deformed to some A ≥ C with index J(A) > J(C). In this sense, the open points in Kn

are its locally maximal elements.

Isolated open points correspond to rigid Lie algebras C, i.e. those which cannot be

deformed to any A ∈ Kn with A 6≤ C and index J(A) ≥ J(C). In this sense, the isolated
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open points are the locally isolated maximal elements. In Sect. 4.2.2 the isolated open

points are considered also from the topologically dual perspective.

K1 contains only the Abelian algebra I1. K2 contains 2 algebras, the Abelian I2 and

the isolated open point V2, with a non-trivial transition V2 → In. The structure of K3 is

depicted explicitly in Fig. 1. In [20, 19] also the (already much more involved) topological

structure of K4 is shown in similar detail.

Consider a 1-parameter set of matrices At ∈ GL(n) with 0 < t ≤ 1, having a well

defined matrix limit

A0 := lim
t→0

At (4.24)

which is singular, i.e. detA0 = 0.

For given structure constants Ck
ij of a Lie algebra A let us define for 0 < t ≤ 1 further

structure constants

Ck
ij(t) := (A−1

t )k
h C

h
fg (At)

f
i (At)

g
j , (4.25)

which, according to (4.15), all describe the same Lie algebra A.

If there is a well defined limit Ck
ij(0) := limt→0C

k
ij(t), which satisfies conditions (4.7)

and (4.8), yielding well defined structure constants of a Lie algebra B, then the associated

transition A ≤ B is called a contraction.

Moreover a contraction is called Inönü-Wigner contraction if there is a basis {ei} in

which

A(t) =

(
Em 0

0 t · En−m

)
∀t ∈ [0, 1], (4.26)

where Ek denotes the k-dimensional unit matrix (cf. [54] and [57]). Given the decompo-

sition (4.26), it was shown in [54] that, the limit Ck
ij(0) exists iff ei, i = 1, . . . ,m span a

subalgebra W of A, which then characterizes the contraction.

The elements of K3 are well known to correspond to the famous Bianchi Lie algebras,

classified independently by Lie [58] and Bianchi [59]. For all types of Bianchi Lie algebras

I up to IX an explicit description can be given in terms of the nonvanishing matrices

C<i>, i = 1, . . . , 3, of some adjoint representation. This representation can be normalized

modulo an overall scale of the basis e1, e2, e3, and moreover C3 can be chosen in some

normal form ([20, 19] use the Jordan normal form).

In the semisimple representation category, there are only the simple Lie algebras

VIII ≡ so(1, 2) = su(1, 1) and IX ≡ so(3) = su(2). All other algebras are in the solv-

able representation category. They all have an Abelian ideal span{e1, e2}. Hence, with

vanishing C<1> = C<2> = 0, they are all characterized by C<3> only.

Transitions then arise both by algebraic and geometric specialization of the normal

form of C<3>, i.e. by degenerating of its eigenvalues or increasing multiplicities of its

eigenvectors.

Anlong any line, specialization terminates at the unique Abelian Lie algebra I.

Fig. 1 shows on each horizontal level the algebras of equal index, which are the sources

for the level below, and possible targets for the level above.
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Figure 1: The topological space K3 (right and left images have to be identified for the

algebras IV and V; the locally maximal algebras IV, VIh and VIIh, 0 ≤ h < ∞, form a

1-parameter set of sources of arrows).
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Fig. 2 gives the analogous picture for the space K3

IC of 3-dimensional complex Lie algebras.

Figure 2: The topological space K3

IC (the locally maximal algebras IV, eh, 0 ≤ h < ∞,

form a 1-parameter set of sources of arrows).
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4.2.2 Zariski dual topology and Lie algebra cohomology

Now note that for any topology there exists a dual topology by exchanging open and closed

sets. Applied to the topology κn, open points of Kn become closed and closed points

become open for the dual topology. Furthermore source and target of arrows interchange

in the dual topology, i.e. their arrows change their direction. In the dual topology the rigid

Lie algebras correspond to isolated closed points. Actually all semisimple Lie algebras are

such isolated closed points.

Recall now, that on any algebraic variety there is a unique topology, called the Zariski

topology, such that its closed subsets correspond to algebraic subvarieties. In this sense

the topology κn turns naturally out to be the dual of the Zariski topology on Kn. So,

what is the meaning of this Zariski dual topology of Kn and, more specifically of its closed

points and isolated closed points ? To answer that question, note first that the reversed

arrows of the dual topology correspond to some ”inverse limit” of the transitions along

them. More generally the dual of any transition might be called spontaneous deformation

in Kn. This has to be distinguished from a parametrical deformation in Kn, which is

given by a continuous change of parameters within a Hausdorff connected component of

Kn. In the Zariski dual topology of Kn, the closed points cannot be source of sponta-

neous deformations in Kn, and the isolated closed points admit neither spontaneous nor

parametrical deformations.

Actually deformations of Lie algebras can also be considered from a slightly different

point of view, using Lie algebra cohomology, introduced in [60] and [61]. Let us consider

a cochain complex

0→C0

δ0
→C1

δ1
→C2→ . . . .

(4.27)

Its cochain spaces

Ck(A,R) := {f :

k︷ ︸︸ ︷
A⊗ · · · ⊗ A→ R|f linear, antisymmetric} (4.28)

can generally be defined for any A-module R over some Lie algebra A. The coboundary

operators are given by

δkf(x1, . . . , xn) :=
k∑

i=1

(−1)k+ixif(x1, . . . , x̂i, . . . , xn)

+
k∑

i,j=1

(−1)i+jf(x1, . . . , x̂i, . . . , x̂j, . . . , xn, [xi, xj]). (4.29)

f is an k-cocycle iff δkf = 0. Zk(A,R) := ker δk. f is an k-coboundary iff f = δk−1g.

Bk(A,R) := imδk−1. The coboundary (4.29) satisfies δ2 = 0, hence Bn(A,R) ⊂ Zn(A,R)

and the kth cohomology is defined as Hk(A,R) := Zk(A,R)/Bk(A,R).

Let us restrict now for simplicity to complexes (4.27) with R = A, where the left

multiplication by x is just given by the adjoint action adx := [x, ·], and write Ck ≡
Ck(A,A) and Hk ≡ Hk(A,A), keeping in mind that these quantities all depend on the

algebra A ∈ Kn.
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The deformation [·, ·]ε of the product [·, ·] of some algebra A, can be written as a formal

power series

[x, y]ε = [x, y] + εF1(x, y) + ε2F2(x, y) + . . . . (4.30)

If the product [·, ·] is defined in some category, e.g. the category Lie products W n of Lie

algebras in Kn, the formally deformed product [·, ·]ε is in general not well defined on the

same category, but only on some extended category. In order to be still a product in the

same category, here in W n, the deformed product [·, ·]ε has to satisfy an infinite number

of deformation equations, namely for all k ∈ IN0 the coefficients of the formal power series

have to satisfy ∑
x,y,z
cyclic

∑
i+j=k

Fi(Fj(x, y), z) + Fj(Fi(x, y), z) = 0, (4.31)

with F0 ≡ [·, ·]. For Lie products in W n, the equation for k = 0 corresponds to the Jacobi

condition, and the infinitesimal deformation equation, i.e. the equation for k = 1, can be

expressed with δ ≡ δ2 from (4.29) as

δF1 = 0. (4.32)

So we see that Z2 is the set of infinitesimal deformations of elements of W n. Some of these

deformations yield the again the original algebra A ∈ Kn, i.e. they are deformations along

the GL(n)-orbit through F0 ∈ W n. These trivial infinitesimal deformations are elements

of B2. Hence H2 contains just the non-trivial infinitesimal deformations. If some algebra

A ∈ Kn satisfies H2 ≡ H2(A,A) = 0, then this algebra cannot be source of infinitesimal

deformations. The latter may, corresponding to the definitions above, be divided into in-

finitesimal spontaneous deformations and infinitesimal parametrical deformations, where

the former are the duals of transitions and the latter generate parametrical deformations

within the Hausdorff connected component of A. So, if A ∈ Kn is an isolated open point

w.r.t. the original topology of Kn or, equivalently, an isolated closed point w.r.t. the

Zariski dual topology of Kn, then there are no non-trivial infinitesimal deformations of

the product F0 ∈ W n; rather all infinitesimal deformations are within π−1(A) ⊂ W n. For

these algebras H2 = 0. In particular, the latter is known to be true for all semisimple Lie

algebras.

4.2.3 Classifying spaces of local homogeneous geometries

Now we will construct a classifying space for local homogeneous Riemannian 3-manifolds.

The KS spaces appear as a limit of Bianchi IX spaces, in which the Bianchi IX isometry

is still maintained, but no longer transitive. Hence it is sufficient to consider local 3-

manifolds of Bianchi Lie isometry.

For the present case of Riemannian 3-spaces gab has a definite sign. Let us consider

the 3-geometry modulo a transformation of the its global sign,

gab → −gab. (4.33)

Then we can normalize the global sign with det(gab) > 0 to ε1 = ε3 = ε3 = 1 in Eq. (4.3).
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The choice of real parameters s, t, w of Eq. (4.3) simplifies calculations in a specific

triad basis of the Lie algebra corresponding to the isometry of the geometry. This basis is

chosen in consistency with the representations of [51] and [62]. It can be represented by

matrices (ea
α), with anholonomic a = 1, 2, 3 of the generators of the algebra, and holonomic

coordinate columns α = 1, 2, 3.

The structure constants can be reobtained from ds2 and the triad by

Cijk = ds2([ei, ej], ek), Ck
ij = Cijrg

rk. (4.34)

The metrical connection coefficients are determined as

Γk
ij =

1

2
gkr(Cijr + Cjri + Cirj). (4.35)

The Ricci tensor is

Rij := Rk
ikj = Γf

ijΓ
e
fe − Γf

ieΓ
e
fj + Γe

ifC
f
ej. (4.36)

From (4.36) we may form the following scalar invariants of the geometry: The Ricci

curvature scalar

R := Ri
i, (4.37)

the sum of the squared eigenvalues

N := Ri
jR

j
i, (4.38)

the trace-free scalar

S := Si
jS

j
kS

k
i = Ri

jR
j
kR

k
i −RN +

2

9
R3, (4.39)

where Si
j := Ri

j − 1
3
δi

jR, and, related to the York tensor,

Y := Rik;jg
ilgjmgknRlm;n, with (4.40)

Rij;k := eα
i e

β
j e

γ
kRαβ;γ

= el
α;βe

α
me

β
k(δm

i δ
n
j + δn

i δ
m
j )Rln.

The 4 scalar invariants above characterize a local homogeneous Riemannian 3-space.

It is N = 0, iff the Riemannian 3-space is the unique flat one. This has a transitive

isometry of Bianchi type I, and also admits the left-invariant (but not transitive) action

of the Bianchi group VII0 on its 2-dimensional hyperplanes (cf. [63, 64]).

In the following we take the flat Riemannian 3-space as a center of projection for

the non-flat Bianchi or KS geometries. These satisfy N 6= 0. The invariant N then

parametrizes (like e−2s) the homogeneous conformal scale on the 3-manifold under con-

sideration. A homogeneous conformal, i.e. homothetic, rescaling of the metric,

gij →
√
Ngij, (4.41)

yields the following normalized invariants, which depend only on the homogeneously con-

formal class of the geometry:

N̂ := 1, R̂ := R/
√
N, Ŝ := S/N3/2, Ŷ := Y/N3/2. (4.42)
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For a non-flat Riemannian space, the invariant Ŷ vanishes, iff the 3-geometry is confor-

mally flat. Note that a general conformal transformation is not necessarily homogeneous.

Hence, there may exist homogeneous spaces, which are in the same conformal class, but

in different homogeneous-conformal classes.

Note that, in the Riemannian case, under (4.33), N is invariant, while R̂, Ŝ and Ŷ

just all reverse their sign. Furthermore, a rescaling (4.41) does not change the Bianchi or

KS type of isometry.

In the Lorentzian case, N may change its sign, and also it may be zero even in the

non-flat case. Nevertheless, for non-flat spaces with N 6= 0 the invariants (4.42) can be

defined even in the Lorentzian case.

So we can now concentrate on the classifying space of non-flat local homogeneous Rie-

mannian 3-geometries modulo the global sign (4.33) and modulo homogeneous conformal

transformations (4.41) for each fixed Bianchi type. This moduli space can be parametrized

by the invariants R̂, Ŝ and Ŷ , given for each fixed Bianchi type as a function of the

anisotropy parameters t and w.

A minimal cube, in which the classifying moduli space can be imbedded, is spanned

by R̂/
√

3,
√

6Ŝ ∈ [−1, 1] and 2 tanh Ŷ ∈ [0, 2].

Below, Fig. 3 describes those points of the moduli space which are of Bianchi types

VI/VII or lower level, Fig. 4 likewise points of Bianchi types VIII/IX.
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Figure 3: Riemannian Bianchi geometries II, IV, V, VIh(w = 0),

VIh (
√
h = 0, 1

5
, 1

4
, 1

3
, 5

8
, 1, 2), VIIh (

√
h = 0, 1

7
, 1

5
, 1

4
, 1

3
, 1

2
, 1);

w.r.t. the common origin, the axes of the 3 planar diagrams, are:

R̂/
√

3 to the right,
√

6Ŝ up, and 2 tanh Ŷ both, left and down.
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Figure 4: Riemannian Bianchi geometries II, V, VI0, VI1, VII0,

VIII(t, w) (t = −5,−1, 0, 1, 5), IX(t, w) (t = 0, 1
2
, 1, 2, 5);

w.r.t. the common origin, the axes of the 3 planar diagrams, are:

R̂/
√

3 to the right,
√

6Ŝ up, and 2 tanh Ŷ both, left and down.

36



For a homogeneous space with 2 equal Ricci eigenvalues the corresponding point in the

R̂-Ŝ-plane lies on a double line L2, which has a range defined by |R̂| ≤
√

3 and satisfies

the algebraic equation

162Ŝ2 = (3− R̂2)3 . (4.43)

All other algebraically possible points of the R̂-Ŝ-plane lie inside the region surrounded

by the line L2. At the branch points R̂ = ±
√

3 of L2 all Ricci eigenvalues are equal.

These homogeneous spaces possess a 6-dimensional isometry group. Homogeneous spaces

possessing a 4-dimensional isometry group are represented by points on L2.

If one Ricci eigenvalue equals R, i.e. if there exists a pair (a,−a) of Ricci eigenvalues,

the corresponding point in the R̂-Ŝ-plane lies on a line L+−, defined by the range |R̂| ≤ 1

and the algebraic equation

Ŝ =
11

9
R̂3 − R̂. (4.44)

In the case that one eigenvalue of the Ricci tensor is zero, the corresponding point in

the R̂-Ŝ-plane lies on a line L0, defined by the range |R̂| ≤
√

2 and the algebraic equation

Ŝ =
R̂

2
(1− 5

9
R̂2). (4.45)

For Eqs. (4.43),(4.44),(4.45) see also [18].

At the branch points of the curve L2 the Ricci tensor has a triple eigenvalue, which

is negative for geometries of Bianchi type V, and positive for type IX geometries with

parameters (t, w) = (0, 0). These constant curvature geometries are all conformally flat

with Ŷ = 0. Besides the flat Bianchi I geometry, the remaining conformally flat spaces

with Ŷ are the KS space (R̂, Ŝ, Ŷ ) = (
√

2,−
√

2
18
, 0) and, point reflected, the Bianchi type

IIIc, corresponding to the initial point of a Bianchi III line segment ending at the Bianchi

II point in Fig. 3.

The point (−1, 0, 0) of Fig. 3 admits both types, Bianchi V and VIIh with h > 0.

Nevertheless, this point corresponds only to one homogeneous space, namely the space

of constant negative curvature. This is possible, because this space has a 6-dimensional

Lie group, which contains the Bianchi V and VIIh subgroups. Note that in the flat limit

V → I, the additional Bianchi groups VIIh change with h→ 0.

Similarly, the Bianchi III points of Fig. 3 lie on the curve L2 of the R̂ − Ŝ diagram.

However, these points are also of Bianchi type VIII. In fact, each of them correspond to one

homogeneous geometry only. However, the latter admits a 4-dimensional isometry group,

which has two 3-dimensional subgroups, namely Bianchi III and VIII, both containing

the same 2-dimensional non-Abelian subgroup.

Altogether, the location of Riemannian Bianchi (and KS) spaces is consistent with the

topology κ3 of the space of Bianchi Lie algebras.

Our classifying moduli space of local homogeneous Riemannian 3-spaces is a T2 (Haus-

dorff) space. But it is not a topological manifold: The line of VII0 moduli is a common

boundary of 3 different 2-faces, namely that of the IX moduli, that of the VIII moduli,

and with h → 0 that of all moduli of type VIIh with h > 0. Like the moduli space, also

the full classifying space is not locally Euclidean; rather both are stratifiable varieties.
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The general admissibility of certain isometry groups of 3-dimensional Riemannian and

Lorentzian metrics has been investigated in [65] and [66] respectively.

In the following we proceed vice versa: We calculate the characteristic scalar invariants

(4.42) for non-flat Bianchi geometries, in different signature cases. Because here the di-

mension is odd, the transformation gab → −gab changes the sign of det(gab). Furthermore,

it keeps N invariant and maps R→ −R, S → −S and Y → −Y .

Therefore let us normalize this global sign by det(gab) > 0 for any gab, Riemannian or

Lorentzian. Then for the latter case there remain 3 subcases of signature ε := (ε1, ε2, ε3)

to be studied: ε = (+−−), (−+−), (−−+).

For Fig. 5 and 6 below, we consider for different signatures the rescaled cube spanned

by the scalar invariants R̂/
√

3,
√

6Ŝ ∈ [−1, 1] and 2 tanh Ŷ ∈ [0, 2].

The scalar invariants for all non-flat Riemannian Bianchi geometries are as follows:

R̂II = −
√

3

3

ŜII =
16
√

3

81

ŶII =
8
√

3

9
(4.46)

R̂IV = − 12 ew + 1√
48 e2 w + 16 ew + 3

ŜIV =
16 + 72 ew

9 (48 e2 w + 16 ew + 3)3/2

ŶIV =
8 + 8 ew + 32 e2 w

(48 e2 w + 16 ew + 3)3/2
(4.47)

R̂V = −
√

3

ŜV = 0

ŶV = 0 (4.48)

In the next formulas, D represents an expression to simplify the following equations.

DVIh
:= 3 + 4 (4h+ 1) ew + 2

(
1 + 16h+ 24h2

)
e2 w

+4 (4h+ 1) e3 w + 3 e4 w

R̂VIh
= −(DVIh

)−
1
2

(
1 + 2 (1 + 6h) ew + e2 w

)
ŜVIh

=
8

9
(DVIh

)−
3
2 (ew + 1)4 (2 + (9h− 5) ew + 2 e2 w

)
ŶVIh

= 8 (DVIh
)−

3
2 (ew + 1)2 (e4 w + (h− 1) e3 w

+2
(
2h2 − 5h+ 2

)
e2 w + (h− 1) ew + 1

)
(4.49)

DVIIh
:= 3 + 4 (4h− 1) ew + 2

(
1− 16h+ 24h2

)
e2 w

+4 (4h− 1) e3 w + 3 e4 w
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R̂VIIh
= −(DVIIh

)−
1
2

(
1 + 2 (6h− 1) ew + e2 w

)
ŜVIIh

=
8

9
(DVIIh

)−
3
2 (ew − 1)4 (2 + (9h+ 5) ew + 2 e2 w

)
ŶVIIh

= 8 (DVIIh
)−

3
2 (ew − 1)2 (e4 w + (h+ 1) e3 w

+2
(
2h2 + 5h+ 2

)
e2 w + (h+ 1) ew + 1

)
(4.50)

DVIII := 2 e−2 w+2 t + 3 e−2 w+4 t + 4 e−2 w+t − 4 et + 4 ew + 3 e2 w

+4 e−w + 3 e−2 w − 4 e−w+2 t + 4 e−2 w+3 t + 2 + 4 e−w+t

−4 ew+t − 4 e−w+3 t + 2 e2 t

R̂VIII = −(DVIII)
− 1

2 (2 e−w+t + e−w + e−w+2 t + ew + 2− 2 et)

ŜVIII = −8

9
(DVIII)

− 3
2

(
6 ew+2 t + 3 et+2 w + 3 e5 t−2 w + 14 e−3 w+3 t

+6 e−3 w+2 t + 6 e−3 w+4 t − 3 e−3 w+t + 6 e−w+4 t − 14 e3 t

−3 e−3 w+5 t − 2 e3 w − 2 e−3 w − 15 e−w+t − 3 e−2 w

+15 e−2 w+3 t + 18 ew+t − 15 e−w+3 t − 15 e2 t − 3 e2 w

+15 et + 18 e−2 w+4 t − 18 e−2 w+t + 6 e−w − 42 e−w+2 t

+6 ew − 15 e−2 w+2 t − 2 e−3 w+6 t + 14
)

ŶVIII = 8 (DVIII)
− 3

2

(
3 ew+2 t − et+2 w − e5 t−2 w + 6 e−3 w+3 t

+3 e−3 w+2 t + 3 e−3 w+4 t + e−3 w+t + 3 e−w+4 t − 6 e3 t

+e−3 w+5 t + e3 w + e−3 w − 6 e−w+t + e−2 w + 6 e−2 w+3 t

+5 ew+t − 6 e−w+3 t − 6 e2 t + e2 w + 6 et + 5 e−2 w+4 t − 5 e−2 w+t

+3 e−w − 18 e−w+2 t + 3 ew − 6 e−2 w+2 t + e−3 w+6 t + 6
)

(4.51)

DIX := 2 + 3 e2 w + 3 e−2 w − 4 e−w − 4 e−2 w+t + 3 e−2 w+4 t + 2 e2 t

+2 e−2 w+2 t + 4 e−w+2 t − 4 e−2 w+3 t − 4 ew + 4 et

+4 e−w+t − 4 e−w+3 t − 4 ew+t

R̂IX = (DIX)−
1
2

(
−ew − e−w+2 t − e−w + 2 e−w+t + 2 + 2 et

)
ŜIX = −8

9
(DIX)−

3
2

(
6 ew+2 t + 3 et+2 w + 3 e5 t−2 w − 14 e−3 w+3 t

+6 e−3 w+2 t + 6 e−3 w+4 t + 3 e−3 w+t + 6 e−w+4 t − 14 e3 t

+3 e−3 w+5 t − 2 e3 w − 2 e−3 w + 15 e−w+t + 3 e−2 w

+15 e−2 w+3 t − 18 ew+t + 15 e−w+3 t + 15 e2 t + 3 e2 w

+15 et − 18 e−2 w+4 t − 18 e−2 w+t + 6 e−w − 42 e−w+2 t

+6 ew + 15 e−2 w+2 t − 2 e−3 w+6 t − 14
)

ŶIX = −8 (DIX)−
3
2

(
−3 ew+2 t + et+2 w + e5 t−2 w + 6 e−3 w+3 t

−3 e−3 w+2 t − 3 e−3 w+4 t + e−3 w+t − 3 e−w+4 t + 6 e3 t

+e−3 w+5 t − e3 w − e−3 w − 6 e−w+t + e−2 w − 6 e−2 w+3 t

+5 ew+t − 6 e−w+3 t − 6 e2 t + e2 w − 6 et + 5 e−2 w+4 t + 5 e−2 w+t

−3 e−w + 18 e−w+2 t − 3 ew − 6 e−2 w+2 t − e−3 w+6 t + 6
)

(4.52)
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In order to verify that, for given (R,N, S, Y ) there exists only one Bianchi geometry, we

fix N and examine the position of any Bianchi geometry in the cube of scalar invariants

(R̂/
√

3,
√

6Ŝ, 2 tanh Ŷ ).

For the pseudo-Riemannian homogeneous spaces, the analysis can be done quite anal-

ogously, but up to now, only partial results are known (see e.g. [63]). The conditions

under which different signatures yield isometric spaces are not totally clear at present. A

further problem is that here some of the invariants (4.42) might become singular for some

non-flat spaces with N = 0.

Note also that the Lorentzian flat space accommodates not only the transitive Abelian

Bianchi type I and the isometry group VII0 of its space-like hyperplanes, but also further

left-invariant Bianchi groups, which do not appear in the flat Riemannian case (cf. also

[63]):

Naturally, one of them is the isometry group VI0 of its Minkowskian hyperplanes.

Further admissible Bianchi groups on the Minkowski space are the types II and V.

Actually Lorentzian Bianchi type II geometries are completely known: There exists

a flat left-invariant Lorentz metric, and all non-flat ones are homothetically equivalent

to each other. Non-flat Lorentzian Bianchi II geometries are in all 3 signature cases the

same as the Riemannian ones, Eq. (4.46).

Bianchi geometries with signature ε = (+−−) of type IV, V, VIh and VIIh are the same

as the Riemannian ones, Eqs. (4.47), (4.48), (4.49) and (4.49), respectively. Similarly,

the analogous geometries of signature ε = (−+−) and ε = (−−+) have both exactly the

same values of R̂, Ŝ, Ŷ , although here these are different from Eqs. (4.47), (4.48), (4.49)

and (4.49), respectively.

For type V this difference is just given by a reflection from constant negative curvature

R̂ = −
√

3 to constant positive curvature R̂ =
√

3. Although for Bianchi type V the value

of R̂ changes with the signature ε, its property Ŷ = 0 is preserved for all 3 Lorentzian

signatures as in the Riemannian case. Actually Lorentzian Bianchi V geometries are

known to exist for any constant curvature, including the flat case [63], which however is

excluded for our invariants (4.42).

According to the natural topology in the space K3 of real Lie algebras, type IV inter-

polates between II and V, and both, VIh and VIIh, converge to IV for h→∞. So IV, VIh
and VIIh have to behave under a change of signature consistently with the fixed point II

and the reflection of V.

Finally Bianchi VIII and IX geometries are different for all signatures.
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Figure 5: Bianchi types II, IV, V, VIh, VIIh (h and w as in Fig. 3) for:

(+ + +) lower left, (+−−) top left, (−+−) top right, (−−+) lower right;

the axes are: R̂/
√

3 to the right,
√

6Ŝ to the left, and 2 tanh Ŷ up.
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Figure 6: Bianchi types II, V, VI0, VI1, VII0, VIII, IX (t, w as in Fig. 4) for:

(+ + +) lower left, (+−−) top left, (−+−) top right, (−−+) lower right;

the axes are: R̂/
√

3 to the right,
√

6Ŝ to the left, and 2 tanh Ŷ up.
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5. Cosmological application II: Rigidity of isometries

In this section we sketch the possible application of our results to isometries in math-

ematical cosmology. In particular, the stability of isometries may be an issue during

the evolution of classical cosmological models or in minisuperspace models of quantum

cosmology.

Previously obtained classifying spaces may be useful in the context of rigidity theorems

for the variation of the local isometry type within a Riemannian or Lorentzian 4-geometry.

The traditionally considered 1 + 3-dimensional inhomogeneous cosmological models

with homogeneous Riemannian 3-hypersurfaces (see [18], [67], [68]), and a more general

class of multidimensional geometries (see [16]), admit deformations between Riemannian

Bianchi geometries. Such a deformation may also induce a change of the spatial anisotropy

of the universe, which essentially affects physical quantities like its tunnelling rate [69].

Even for the more general multidimensional case, where M = IR ×M1 × . . . ×Mn with

homogeneous M1, our results provide an important piece of information, namely the

complete control over the possible continuous deformations of the homogeneous external

3-space M1.

Furthermore, the superspace of homogeneous Riemannian 3-geometries plays a key role

for an understanding of the canonical quantization of a homogeneous universe. The ho-

mogeneous conformal modes are just the homothetic scales, which span a 3-dimensional

minisuperspace underlying the conformally equivariant quantization scheme [38], [39],

yielding the Wheeler-deWitt equation for a given point of the moduli space of local ho-

mogeneous 3-geometries. Global properties of the homogeneous 3-geometry have not con-

sidered here. However it should be clear that a given global geometry according to one

of the Thurston types exists only for a specific local geometries specified by characteristic

points in our moduli space (cf. [70]).

The short distance regime of quantum gravity might be described in terms of con-

nection dynamics, recently also related to spin networks [71]. While the standard theory

is worked out for the compact structure group SU(2), the topology of K3 suggests that

this structure group could change by a transition to the noncompact group E(2) and

similarly further, until the 3-dimensional Abelian group is reached. It remains an in-

teresting question, what happens to connections, and moreover to the holonomy groups,

under such a deformation. In [71] a q-deformation of SU(2) was suggested, in order to

regularize infrared divergences. However, infrared divergences are obviously related to

the macroscopic limit. Since in this limit the discrete structure of space-time is expected

to become replaced by a continuous structure, we have no reason to expect that original

spin network, or some related braid structures, might be pertained in the macroscopic

theory. So a transition within the category of Lie algebras is more likely to provide the

solution of the infrared problem, even more, since K3-transitions appear naturally in the

cosmological evolution (e.g. related to the isotropization of a homogeneous universe).

It is remarkable that, the index technique provides a kind of Morse-like potential J on

Kn determining the stability and path of evolution of the isometries under consideration.

For n = 3, the SU(2) isometry is not be protected against spontaneous transitions to a

”lower” isometry. In a dynamical evoltion of the homogeneous geometry it would be only
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metastable, in the sense that it would and ”decay” after some time to a Bianchi isometry

in K3 which has a lower potential level, and so on, until the minimal state of Abelian

symmetry is reached.

The metastability of a higher level in the potential is due to the higher dimension of the

corresponding submanifold of local homogeneous moduli with just that transitive isometry

group. In this this sense, isometries corresponding to interior points of that submanifold

show some rigidity against transitions, due to their distance from the boundary of the

submanifold.

Note that for symmetries in K3, the dimensionality of the subspace of corresponding

moduli increases with the level of the potential.

The complete parametrization of local 3-geometries of a definite class like the homoge-

neous one is of particular interest for a systematic approach to canonical quantization. In

spatially homogeneous quantum cosmology, geometries of different isometry are usually

treated separately.

6. Multidimensional structures

Let r denote the degree of differentiability of the category Cr of manifolds and Cr-

homomorphisms of manifolds. For r = 0, ω,∞, and r ≥ 1, the category Cr , its manifolds

and its homomorphisms are called topological, analytical, smooth, and differentiable re-

spectively.

A Cr manifold can carry additional structure. In particular it can admit a non-trivial

multidimensional decomposition, it can carry causal structure of different strength, and it

can carry geometrical structures, like a connection, and more particularly the latter may

be the Levi-Civita metric one.

Any finite-dimensional Cr manifold M admits a decomposition as a direct product of

Cr manifolds. The decomposition is called minimal if none of the factors itself admits

a non-trivial decomposition. The unique minimal decomposition M = M1 × . . . ×Mn

is called the multidimensional structure of M . If n ≥ 2, M is called a multidimensional

manifold.

A Cr-fiber bundle of manifolds is an exact sequence

M↪→N →M0, (6.1)

with fiber space M , total space N , and base space M0 all being Cr-manifolds.

Definition: Let a Cr-fiber bundle (6.1) of manifolds be such that the fiber manifold

is a direct product of length l (1 ≤ l ≤ ∞),

M := ×l
i=1Mi, (6.2)

where Mi, i ∈ IN, are Cr-manifolds of finite dimension di, and also dimM0 =: D0 < ∞.

Then the total space N of (6.1) is called a multidimensional Cr-manifold.

The manifolds Mi, i ≥ 1, are called the factor spaces of N , and M0 denotes the base

space. (Later, for considerations of dynamics and cosmology, the base manifold will be

assumed to factorize, M0 := IR×M0.)
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On multidimensional manifolds of finite length l there is an extensive literature, to

which [23] and reference therein give somes introduction from a more contemporary point

of view. Nevertheless for generality we may consider also the case of countably many

factor spaces, l = ∞, at least in those parts which deal with the general structure of

multidimensional geometry. (Examples considered currently as physically relevant for

Einstein gravity, restrict to l <∞ and D0 = 4.)

The MD manifold N is called internally homogeneous if there exists a direct prod-

uct group G :=
⊗n

i=0Gi with a direct product realization τ := ⊗n
i=0τi on Diff(M) :=⊗n

i=0 Diff(Mi) such that for i = 0, . . . , n the realization

τi : Gi → Diff(Mi) (6.3)

yields a transitive action of τi(Gi) on Mi.

Now for i = 0, . . . , n, let each factor space Mi be equipped with a smooth homogeneous

metric g(i). rendering it into a homogeneous Riemannian manifold. Furthermore, let M0

be equipped with an arbitrary C∞-metric g(0), and let γ and βi , i = 1, . . . , n be smooth

scalar fields on M0.

Then, under any projection pr : N → M0 a pullback of e2γg(0) from x ∈ M0 to

z ∈ pr−1{x} ⊂M , consistent with the fiber bundle (6.1) and the homogeneity of internal

spaces, is given by

g(z) := e2γ(x)g
(0)
(x) ⊕

n
i=1 e

2βi(x)g(i). (6.4)

The function γ fixes a gauge for the (Weyl) conformal frame on M0, corresponding just

to a particular choice of geometrical variables.

γ uniquely defines the form of the effective D0-dimensional theory. For example γ := 0

defines the Brans-Dicke frame.

Let us now consider a multidimensional manifold N (6.1) of dimension D = D0 +∑n
i=0 di, equipped with a (pseudo) Riemannian metric (6.4) where

g(i) ≡ gmini
(yi)dy

mi
i ⊗ dyni

i , (6.5)

are R-homogeneous Riemannian metrics on Mi (i.e. the Ricci scalar R[g(i)] ≡ Ri is a

constant on Mi), in coordinates yni
i , ni = 1, . . . , di, and

x 7→ g(0)(x) = g(0)
µν (x)dxµ ⊗ dxν (6.6)

yielding a general, not necessarily R-homogeneous, (pseudo) Riemannian metric on M0.

Eq. (6.4) is the multidimensional generalization of the warped product of Riemannian

manifolds from [48], namely N = M0 ×a M , where a := eβ is now a vector-valued root

warping function, given by

β :=

 β0

...

βn

 . (6.7)

Below sometimes, in particular for physical application to the Diff(M0)-invariant case

with D0 = 4, we will assume the i = 0 geometry to be empty and omit corresponding
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empty contributions to tensors, summations etc. For later convenience we also define

ε(I) :=
∏
i∈I

εi; σ0 :=
n∑

i=0

diβi, σ1 :=
n∑

i=1

diβi, σ(I) :=
∑
i∈I

diβi, (6.8)

where εi := sign(|g(i)|) and Mi ⊂ M for i = 0, . . . , n are all homogeneous factor spaces.

Here and below, we use the shorthand |g| := | det(gMN)|, |g(0)| := | det(g(0)
µν )|, and analo-

gously for all other metrics including g(i), i = 1, . . . , n.

Further, a g(0)-covariant derivative of a given function α w.r.t. xµ is denoted by α;µ,

its partial derivative also by α,µ, and (∂α)(∂β) := g(0)µνα,µβ,ν .

Lemma: On M0, the Laplace-Beltrami operator ∆[g(0)] := 1√
|g(0)|

∂
∂xµ

(√
|g(0)|g(0)µν ∂

∂xν

)
, transforms under the conformal map g(0) 7→ e2γg(0) according to

∆[e2γg(0)]− e−2γ∆[g(0)] = −e−2γg(0)µν (
Γ[e2γg(0)]− Γ[g(0)]

)λ
µν

∂

∂xλ

= e−2γ(D0 − 2)g(0)µν ∂γ

∂xµ

∂

∂xν
(6.9)

where Γ denotes the Levi-Civita connection.

In general, the Levi-Civita connection Γ corresponding to (6.4) does not decompose

multidimensionally, and neither does the Riemann tensor. The latter is a section in

T1
3M which is not given as a pullback to M0 of a section in the direct sum ⊕n

i=1T
1
3Mi of

corresponding tensor bundles over the factor manifolds.

However, with (6.4) the Ricci tensor decomposes again multidimensionally.

Theorem:

Ric[g] = Ric(0)[g(0), γ;φ]⊕n
i=1 Ric(i)[g(0), γ; g(i), φ], (6.10)

where

Ric(0)
µν := Rµν [g

(0)] + g(0)
µν

{
−4 [g(0)]γ + (2−D0)(∂γ)

2 − ∂γ
n∑

j=1

dj∂φ
j
}

+(2−D0)(γ;µν − γ,µγ,ν)−
n∑

i=1

di(φ
i
;µν − φi

,µγ,ν − φi
,νγ,µ + φi

,µφ
i
,ν),

Ric(i)
mini

:= Rmini
[g(i)]− e2φi−2γg(i)

mini

{
4[g(0)]φi + (∂φi)[(D0 − 2)∂γ +

n∑
j=1

dj∂φ
j]
}
,

i = 1, . . . , n, (6.11)

The corresponding Ricci curvature scalar reads

R[g] = e−2γR[g(0)] +
n∑

i=1

e−2βi

R[g(i)]− e−2γg(0)µν

(
(D0 − 2)(D0 − 1)

∂γ

∂xµ

∂γ

∂xν

+
n∑

i,j=1

(diδij + didj)
∂βi

∂xµ

∂βj

∂xν
+ 2(D0 − 2)

n∑
i=1

di
∂γ

∂xµ

∂βi

∂xν

)

−2e−2γ∆[g(0)]

(
(D0 − 1)γ +

n∑
i=1

diβ
i

)
. (6.12)
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Let us now set

f ≡ f [γ, β] := (D0 − 2)γ +
n∑

j=1

djβ
j, (6.13)

where β is the vector field with the dilatonic scalar fields βi as components. (Note that

f can be resolved for γ ≡ γ[f, β] if and only if D0 6= 2. The singular case D0 = 2 is

discussed in [26].) Then, (6.12) can also be written as

R[g] − e−2γR[g(0)]−
n∑

i=1

e−2βi

Ri = (6.14)

= − e−2γ

{
n∑

i=1

di(∂β
i)2 + (∂f)2 + (D0 − 2)(∂γ)2 + 2∆[g(0)](f + γ)

}

= − e−2γ

{
n∑

i=1

di(∂β
i)2 + (D0 − 2)(∂γ)2 − (∂f)∂(f + 2γ) +RB

}
,

RB :=
1√
|g(0)|

e−f∂µ

[
2ef

√
|g(0)|g(0)µν∂ν(f + γ)

]
, (6.15)

where the last term will yield just a boundary contribution (6.22) to the action (6.21)

below.

In particular it follows that the bracket {· · ·} in (6.14) is Cr if and only if R[g] −
e−2γR[g(0)]−

∑n
i=1 e

−2βi
Ri is Cr. The latter may be the case for Einstein manifolds with

all metrics and scale factors Cr, whence the combination of derivatives in the bracket has

to be Cr too.

Let us assume all Mi, i = 1, . . . , n, to be connected and oriented. The Riemann-

Lebesgue volume form on Mi is denoted by

τi := vol(g(i)) =
√
|g(i)(yi)| dy1

i ∧ . . . ∧ dy
di
i , (6.16)

and the total internal space volume by

µ :=
n∏

i=1

µi, µi :=

∫
Mi

τi =

∫
Mi

vol(g(i)). (6.17)

If all of the spaces Mi, i = 1, . . . , n are compact, then the volumes µi and µ are finite, and

so are also the numbers ρi =
∫

Mi
vol(g(i))R[g(i)]. However, a non-compact Mi might have

infinite volume µi or infinite ρi. Nevertheless, by the R-homogeneity of g(i) (in particular

satisfied for Einstein spaces), the ratios ρi

µi
= R[g(i)], i = 1, . . . , n, are just finite constants.

In any case, the D-dimensional coupling constant κ can be tuned such that, under the

dimensional reduction pr : M →M0,

κ0 := κ · µ−
1
2 (6.18)

becomes the D0-dimensional physical coupling constant. If D0 = 4, then κ0
2 = 8πGN ,

where GN is the Newton constant. The limit κ→∞ for µ→∞ is in particular harmless,

if D-dimensional gravity is given purely by curvature geometry, without additional matter
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fields. If however this geometry is coupled with finite strength to additional (matter) fields,

one should indeed better take care to have all internal spaces Mi, i = 1, . . . , n compact.

Often this can be achieved by factorizing with an appropriate finite symmetry group.

A conformal frame of a smooth geometry g is a representative ĝ ∈ [g] for its cor-

responding Weyl geometry [g], i.e. there exists a smooth scalar function ω such that

g = e−2ωĝ. A parametrization of g within its Weyl class [g] is given by the pair (ĝ, ω) of

a conformal frame ĝ and a dilatonic scalar ω, such that g = e−2ωĝ. Any geometry g can

be represented in different but equivalent conformal frames (ĝ1, ω1) and (ĝ2, ω2), where

(ĝ1, ω1) ∼ (ĝ2, ω2) : ⇔ ĝ1 = e2(ω1−ω2)ĝ2.

If a geometry is taken as its own frame, its corresponding parametrization is (ĝ, ω) = (g, 0).

Any (ĝ, ω) 6= (g, 0) defines a (non trivial) reparametrization of g within its Weyl class. Vice

versa, a new conformal frame ĝ reparametrizing g is given by a conformal transformation

g 7→ ĝ := e2ωg.

Let Met(M) and SF(M) denote the spaces of smooth metrics resp. scalar fields on M .

Let {X(M)}2 denote the 2-jet space (given by derivatives of order 0, 1 and 2) of functions

in X(M) w.r.t. the Levi-Civita covariant derivative operator ∇.

The numerical value S of the Einstein Hilbert action is invariant under reparametriza-

tion of the geometry g in a new conformal frame ĝ,

S = S{Met(M)}2 [g] = S{Met(M)}2×{SF(M)}2 [ĝ, ω] ,

where S{Met(M)}2 [g] :=
1

2κ2

∫
M

dDz
√
|g|R[g] (6.19)

S{Met(M)}2×{SF(M)}2 [ĝ, ω] :=
1

2κ2

∫
M

dDz
√
|ĝ|e(2−D)ω (R[ĝ] + L[ĝ,−ω]) ,

where L ≡ 0 for ∇ω = 0. However the (Einstein Hilbert) functional form of the action

need not be preserved even for homogeneous spaces where ω is constant. In general

S{Met(M)}2 6= S{Met(M)}2×{SF(M)}2 .

Nevertheless, if S{Met(M)}2 is minimal at a distinguished solution geometry gs, then, at

any ω ∈ SF(M) the restricted functional S{Met(M)}2×{ω,∇ω,∇2ω} is likewise minimal at the

geometry ĝs = e2ωgs, with same minimal value S. Hence, the scale field ω is a gauge field

corresponding to the reparametrization invariance of S.

In the special case D = 2 (6.19) becomes purely topological modulo a boundary

contribution, which vanishes for ∂M = 0 whence also the action functional of (6.19) is

independent of ω and therefore reparametrization invariant.

On the other hand, a conformal transformation g 7→ ĝ := e2ωg in general also changes

the value of the action functional,

S =
1

2κ2

∫
M

dDz
√
|g|R[g] 7→ Ŝ :=

1

2κ2

∫
M

dDz
√
|ĝ|R[ĝ] (6.20)

=
1

2κ2

∫
M

dDz
√
|g|e(D−2)ω (R[g] + L[g, ω]) .

Similar holds for other action functionals which contain additional (boundary, scalar, and

other) terms besides the Einstein Hilbert one.
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6.1 Effective σ-model for pure multidimensional geometry

With the total dimension D , κ2 a D-dimensional gravitational constant we consider a

purely gravitational action of the form

S =
1

2κ2

∫
N

dDz
√
|g|{R[g]}+ SGHY. (6.21)

Here a (generalized) Gibbons-Hawking-York [72], [73] type boundary contribution SGHY

to the action is taken to cancel boundary terms.

Lemma: In (6.21) boundary terms cancel, if and only if

SGHY =
1

2κ2

∫
N

dDz
√
|g|{e−2γRB}

=
1

κ2
0

∫
M0

dD0x
∂

∂xλ

(
ef

√
|g(0)|g(0)λν ∂

∂xν
(f + γ)

)
. (6.22)

Proof: Eqs.(6.14) and (6.15) show that SGHY should be taken in the form (6.22).

(6.22) is a pure boundary term in form of an effective D0-dimensional flow through

∂M0.

After dimensional reduction the action (6.21) reads

S =
1

2κ2
0

∫
M0

dD0x

√
|g(0)|ef

{
R[g(0)] + (∂f)(∂[f + 2γ])−

n∑
i=1

di(∂β
i)2

−(D0 − 2)(∂γ)2 + e2γ

[
n∑

i=1

e−2βi

Ri

]}
, (6.23)

where ef is a dilatonic scalar field coupling to the D0-dimensional geometry on M0.

According to the considerations above, due to the conformal reparametrization invari-

ance of the geometry on M0, we should fix a conformal frame on M0. But then in (6.23)

γ, and with (6.13) also f , is no longer independent from the vector field β, but rather

γ ≡ γ[β] , f ≡ f [β]. (6.24)

Then, modulo the conformal factor ef , the dilatonic kinetic term of (6.23) takes the form

(∂f)(∂[f + 2γ])−
n∑

i=1

di(∂β
i)2 − (D0 − 2)(∂γ)2 = −Gij(∂β

i)(∂βj), (6.25)

with Gij ≡ (γ)Gij, where

(γ)Gij := (BD)Gij − (D0 − 2)(D0 − 1)
∂γ

∂βi

∂γ

∂βj
− 2(D0 − 1)d(i

∂γ

∂βj)
, (6.26)

(BD)Gij := δijdi − didj. (6.27)

(In (6.26) the brackets (· · ·) denote symmetrization.) For D0 6= 2, we can write equiva-

lently Gij ≡ (f)Gij, where

(f)Gij := (E)Gij −
D0 − 1

D0 − 2

∂f

∂βi

∂f

∂βj
, (6.28)

(E)Gij := δijdi +
didj

D0 − 2
. (6.29)
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For D0 = 1, Gij = (E)Gij = (BD)Gij is independent of γ and f . Note that the metrics

(6.27) and (6.29) (with D0 6= 2) may be diagonalized to (∓(±)δ1D0 )δ1iδij respectively, by

homogeneous linear minisuperspace coordinate transformations β
T7→z and β

Q7→ϕ, explicitly

given by components

z1 := (BD)q−1

n∑
j=1

djβ
j , ϕ1 := (E)q−1

n∑
j=1

djβ
j ,

zi ≡ ϕi := [di−1/ Σi−1Σi]
1/2

n∑
j=i

dj

(
βj − βi−1

)
, (6.30)

i = 2, . . . , n, where with D′ := D −D0 and Σk :=
∑n

i=k di,

(BD)q :=

√
D′

D′ − 1
, (E)q :=

√
D′(D0 − 2)

D′ +D0 − 2
. (6.31)

So, after fixing a conformal reparametrization gauge for the geometry on M0, (6.21)

becomes a σ-model, where the vector field β (or z resp. ϕ) defines the coordinates of its

n-dimensional target space. In the following, we will simplify notation by a summation

convention for tensors over target space.

In general, for n > 2 and non-constant functional γ[β], the minisuperspace metric given

by (6.25) and the conformally related target space metric may not even be conformally

flat. However, for constant γ, (6.26) reduces to (6.27), whence target space is conformally

flat, namely it is related to n-dimensional Minkowski space by a conformal scale factor

ϕ ≡ ϕ(β) :=
n∏

l=1

edlβ
l

= e
(BD)qz1

= e
(E)qϕ1

, (6.32)

which is proportional to the total internal space volume.

In the case D0 6= 2, for non-constant functional f [β], the target space may again in

general not be conformally flat for n > 2. However, for constant f , (6.28) reduces to

(6.29), whence, target space is a flat n-dimensional space, namely an Euclidean one for

D0 > 2, and a Minkowskian one for D0 = 1.

After gauging γ, setting m := κ−2
0 , (6.23) yields a σ-model in the form

(γ)S =

∫
M0

dD0x

√
|g(0)|(γ)ND0 ϕ(β)

{m
2

(γ)N−2
[
R[g(0)]− (γ)Gij(∂β

i)(∂βj)
]

−(BD)V (β)
}
, (6.33)

where (BD)V (β) := m

[
−1

2

n∑
i=1

R[g(i)]e−2βi

]
, (6.34)

(γ)N := eγ . (6.35)

Note that, the potential (6.34) and the conformal factor φ(β) :=
∏n

i=1 e
diβ

i
are gauge

invariant.
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Analogously, from (6.23) a σ-model action can be obtained for each gauge f .

Lemma:

(f)S =

∫
M0

dD0x

√
|g(0)|(f)ND0

{m
2

(f)N−2
[
R[g(0)]− (f)Gij(∂β

i)(∂βj)
]

−(E)V (β)
}
, (6.36)

(E)V (β) := mΩ2

[
−1

2

n∑
i=1

R[g(i)]e−2βi

]
, (6.37)

(f)N := e
f

D0−2 , (6.38)

where the function Ω on M0 is defined as

Ω := ϕ
1

2−D0 . (6.39)

Note that, with Ω also the potential (6.37) is gauge invariant, and the dilatonic target-

space, though not even conformally flat in general, is flat for constant f .

In fact, Eqs. (6.33)-(6.35) and (6.36)-(6.38) show that there are at least two special

frames.

The first one corresponds to the gauge γ
!
= 0. In this case (γ)N = 1, the minisuper-

space metric (6.26) reduces to the Minkowskian (6.27), the dilatonic scalar field becomes

proportional to the internal space volume, ef [β] = ϕ(β) =
∏n

i=1 e
diβ

i
, and (6.33) describes

a generalized σ-model with conformally Minkowskian target space. The Minkowskian sig-

nature implies a negative sign in the dilatonic kinetic term. This frame is usually called

the Brans-Dicke one, because ϕ = ef here plays the role of a Brans-Dicke scalar field.

The second distinguished frame corresponds to the gauge f
!
= 0, where γ = 1

2−D0

∑n
i=1 diβ

i

is well-defined only for D0 6= 2. In this case (f)N = 1, the minisuperspace metric (6.28)

reduces to the Euclidean (6.29), and (6.36) describes a self-gravitating σ-model with Eu-

clidean target space. Hence all dilatonic kinetic terms have positive signs. This frame is

usually called the Einstein one, because it describes an effective D0-dimensional Einstein

theory with additional minimally coupled scalar fields. For multidimensional geometries

with D0 = 2 the Einstein frame fails to exist, which reflects the well-known fact that

two-dimensional Einstein equations are trivially satisfied without implying any dynamics.

For D0 = 1, the action of both (6.33) and (6.36) was shown in [32] (and previously

in [38], [39]) to take the form of a classical particle motion on minisuperspace, whence

different frames correspond are just related by a time reparametrization. More generally,

for D0 6= 2 and (M0, g(0)) a vacuum space-time, the σ-model (6.36) with the gauge f
!
= 0

describes the dynamics of a massive (D0− 1)-brane within a potential (6.37) on its target

minisuperspace.

In fact, the target space is in general a conformally homogeneous space, and in the

Einstein frame a homogeneous one. Once its isometry group G and isotropy group H are

known, it is clear that the sigma model (6.36) can also be written in matrix form

Lemma:

(f)S =

∫
M0

dD0x

√
|g(0)|ND0(M)

{m
2
N−2(M)

[
R[g(0)] + g(0)µνBTr ρ(∂µM∂νM−1)

]
−(E)U(M)

}
, (6.40)
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with M ∈ ρ(G) where ρ is an appropriate coset representation of the target space M :=

G/H, (E)U is now the corresponding potential on M, N a gauge function on M, and B a

normalization.

For D0 = 4, eq. (6.40) can also be written in the Einstein frame as

(E)S =

∫
M0

{m
2

[
Tr Ω ∧ ∗Σ +BTr ρdM∧ ∗dM−1

]
−(E)U(M) ∗ 1

}
, (6.41)

where Ω is the curvature 2-form, Σ := e ∧ e and g(0) are given by the D0-dimensional

soldering 1-form e, and the Hodge star is taken w.r.t. (M, g(0)). The form (6.41) is a then

a convenient starting point for the canonical quantization procedure.

In the purely gravitational model consider so far M is a finite dimensional and homo-

geneous with a transitive Abelian group. In the following section let us add minimally

coupled scalar and p+ 2-form matter fields and investigate the extension of the resulting

target space M.

Note: In the following sections the base space M0 is denoted for simplicity just as M0,

unless for those solutions in section 7 below where M0 or its geometry decomposes.

6.2 σ-model with extra scalars and p+ 2-forms

We now couple the purely gravitational action (6.21) to additional matter fields of scalar

and generalized Maxwell type, i.e. we consider now the action

2κ2[S[g, φ, F a]− SGHY] =

∫
N

dDz
√
|g|{R[g]− Cαβg

MN∂Mφ
α∂Nφ

β

−
∑
a∈∆

ηa

na!
exp[2λa(φ)](F a)2} (6.42)

of a self-gravitating σ model on M with topological term SGHY. Here the l-dimensional

target space, defined by a vector field φ with scalar components φα, α = 1, . . . , l, is coupled

to several antisymmetric na-form fields F a via 1-forms λa, a ∈ ∆. For consistency, we have

to demand of course that all fields are internally homogeneous. We will see below how

this gives rise to an effective l + |∆|-dimensional target-space extension. Note also that

for convenience here we work with fields φ and F which differ from the actual (physical)

matter fields by a rescaling with the square root of the coupling constant.

With I ⊂ {1, . . . , n}, the generalized Maxwell fields F a are located on (na − 1)-

dimensional world sheets

MI :=
∏
i∈I

Mi = Mi1 × . . .×Mik , (6.43)

na − 1 = D(I) :=
∑
i∈I

di = di1 + . . .+ dik . (6.44)
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of different (na − 2)-branes, labeled for each a by the sets I in a certain subset Ωa of the

power set of {1, . . . , n}. Variation of (6.42) yields the field equations

RMN −
1

2
gMNR = TMN , (6.45)

Cαβ∆[g]φβ −
∑
a∈∆

ηaλ
α
a

na!
e2λa(φ)(F a)2 = 0, (6.46)

∇M1 [g](e
2λa(φ)F a,M1M2...Mna ) = 0, (6.47)

a ∈ ∆, α = 1, . . . , l.

In (6.45) the D-dimensional energy-momentum resulting from (6.42) is given by a sum

TMN :=
l∑

α=1

TMN [φα, g] + ηa

∑
a∈∆

e2λa(φ)TMN [F a, g], (6.48)

of contributions from scalar and generalized Maxwell fields,

TMN [φα, g] := Cαβ∂Mφ
α∂Nφ

α − 1

2
gMN∂Pφ

α∂Pφα, (6.49)

TMN [F a, g] :=
1

na!

[
−1

2
gMN(F a)2 + naF

a
MM2...Mna

F
a M2...Mna
N

]
. (6.50)

We give now a sufficient criterion for the energy-momentum tensor (6.48) to decompose

multidimensionally.

Let W1 := {i | i > 0, di = 1} be the label set of 1-dimensional factor spaces of the

multidimensional decomposition, and set n1 := |W1|. Define

W (a; i, j) := {(I, J) | I, J ∈ Ωa, (I ∩ J) ∪ {i} = I 63 j, (I ∩ J) ∪ {j} = J 63 i} (6.51)

Then the following holds.

Theorem: If for n1 > 1 the p-branes satisfy the condition for all a ∈ ∆, i, j ∈ W1

with i 6= j, the condition

W (a; i, j)
!
= ∅ ∀a ∈ ∆∀i, j ∈ W1, (6.52)

then the energy-momentum (6.48) decomposes multidimensionally without further con-

straints.

Proof: The only possible obstruction to the multidimensional decomposition of (6.48)

comes from the second term of (6.50), F a
MM2...Mna

F
a M2...Mna
N when the indices M and

N take values in different index sets labeling different 1-dimensional factor spaces. The

theorem then follows just from the antisymmetry of the F -fields. �

Corollary: A sufficient condition for the multidimensional decomposition of (6.48) is

n1

!

≤ 1. (6.53)

If condition (6.52) does not hold, multidimensional decomposability of (6.48) may

impose additional non-trivial constraints on the p+ 2-form fields.
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Let us now specify the components of the F -fields of generalized electric and magnetic

type.

Antisymmetric fields of generalized electric type, are given by scalar potential fields

Φa,I , a ∈ ∆, I ∈ Ωa, which compose to a (
∑

a∈∆ |Ωa|)-dimensional vector field Φ. Magnetic

type fields are just given as the duals of appropriate electric ones.

F e,I = dΦe,I ∧ τ(I) (6.54)

Fm,I = e−2λa(φ) ∗ (dΦm,I ∧ τ(J)). (6.55)

In the Einstein frame, the action then reduces to

(E)S[g(0), β, φ,Φ] =

∫
M0

dD0x
√
|g(0)|

{m
2

[
R[g(0)]−Gij(∂β

i)(∂βj)

−Cαβ(∂φα)(∂φβ)−
∑

a∈∆,I∈Ωa

εa,Ie
2(λa(φ)−diβ

i)(∂Φa,I)2

]
− (E)V (β)

}
, (6.56)

which corresponds to an purely Einsteinian σ-model on M0 with extended (n + l +∑
a∈∆ |Ωa|)-dimensional target space and dilatonic potential (6.37). Here and below we

will consider by default the Einstein frame, and set correspondingly Gij := (E)Gij. In

(6.56) and below a summation convention is assumed also on the extended target space.

For convenience, let us introduce the topological numbers

ljI := −
∑
i∈I

Diδ
i
j, j = 1, . . . , n, (6.57)

and with N := n+ l define and define a N × |S|-matrix

L = (LAs) =

(
Lis

Lαs

)
:=

(
liI
λαa

)
, (6.58)

a N -dimensional vector field (σA) := (βi, φα), A = 1, . . . , n, n + 1, . . . , N , composed by

dilatonic and matter scalar fields, and a non-degenerate (block-diagonal) N ×N -matrix

Ĝ =
(
ĜAB

)
=

(
Gij 0

0 Cαβ

)
. (6.59)

With these definitions, (6.56) takes the form

S0 =

∫
M0

dD0x
√
|g(0)|

{m
2

[
R[g(0)]− ĜAB∂σ

A∂σB −
∑
s∈S

εse
2LAsσA

(∂Φs)2

]
− (E)V (σ)

}
.(6.60)

6.3 Target space structure

Theorem: The target space (M, g) is a homogeneous space.

Proof: The Killing vectors of a transitive subgroup of Isom(M) can be determined

explicitly.

Vs :=
∂

∂Φs
, s ∈ S,

UA :=
∂

∂xA
−
∑
s∈S

Ls
AΦs ∂

∂Φs
, A = 1, . . . , N. (6.61)
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Moreover, the Lie-algebra of the transitive group of isometries generated by (6.61)

reads

[U,U ] = [V, V ] = 0

[UA, Vs] = Ls
AVs, A = 1, . . . , N, s ∈ S . (6.62)

Theorem: The target space (M, g) is locally symmetric if and only if < Ls, Lr >Ĝ

(Ls − Lr) = 0 ∀r, s ∈ S.

Proof: Let Riem denote the Riemann tensor of (M, g). The latter is locally symmetric,

if and only if

∇Riem = 0, (6.63)

where ∇ denotes the covariant derivative w.r.t. g. However, the only non-trivial equations

(6.63) are

∇pRsrqA = kpsrq < Ls, Lr >Ĝ (Lr
A − Ls

A) = 0, A = 1, . . . , N, p, q, r, s ∈ S (6.64)

with kpsrq := εsεre
2Ls+2Lr

(δpsδrq + δprδsq) nonzero for fixed s, r.

6.4 Special coordinate gauges on M0

In this section the existence and use of some special coordinates on M0 is investigated.

If these coordinates exist, they give, in particular, a specific meaning to the particular

reparametrization gauges of constant γ resp. constant f above. Let us consider a metric

on M0 denoted as

g = gµν(x)dx
µ ⊗ dxν , (6.65)

with coordinates xν , ν = 0, . . . , D0− 1. A special standard representation of g is given, if

there exist coordinates tµ, µ = 0, . . . , D0 − 1 such that

g = ηµνdt
µ ⊗ dtν , (6.66)

with ηµν = ηµδµν , ηµ ∈ {−1,+1}.
The standard representation (6.66) exists if and only if g is flat with arbitrary signature

(ηµ). In this case coordinates tµ are called proper coordinates w.r.t. g on M0.

Let us now find the proper coordinates tµX for a flat metric of arbitrary signature in

arbitrary a priori coordinates xµ,

gX = gXµν(x)dx
µ ⊗ dxν !

= ηµνdt
µ
X ⊗ dtνX , (6.67)

We decompose the coordinate transformation xµ 7→ tµX in two steps. First, we diagonalize

gXµν(x) by a local SO(N,D0 − N) rotation LX(x) in the cotangent space T ∗xM0 of each

point x ∈M0, dx
µ 7→ dyµ := Lµ

Xν(x)dx
ν , whence

gX =
gXµµ(y)

ηµ

ηµνdy
µ ⊗ dyν !

= ηµνdt
µ
X ⊗ dtνX . (6.68)
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Then, with SX(y) ∈ Diag+(D0) defined by SX
µ
ν (y) :=

√
gXµµ(y)

ηµµ
δµ
ν , we perform a local

rescaling dyµ 7→ dtµX := SX
µ
ν (y)dyν =

√
gXµµ(y)

ηµ
dyµ. This yields the proper coordinate

vector tX =
∫
SX(y(x)) · LX(x) · dx with explicit components

tµX =

∫ √
||((LX(x))−1)µ||2X

ηµ

Lµ
Xνdx

ν . (6.69)

Here and in the following, for a given metric (frame) gX , ||Aµ||2X :=< Aµ, Aµ >X , where

< Aµ, Aν >X := gXαβA
α

µA
β

ν , and Aµ is the vector of column µ in A.

Now any other metric gY = gY µν(x)dx
µ ⊗ dxν , in the same a priori coordinates xµ,

can be expressed in gX proper coordinates as gY = gY µν(tX)dtµX ⊗ dtνX with components

gY µν(tX) = gY αβ(x)Gαβ
X µν(x), (6.70)

Gαβ
X µν(x) :=

√
||(LX(x))α||2X ||(LX(x))β||2X

ηααηββ

((LX(x))−1)α
µ((LX(x))−1)β

ν ,

where x ≡ x(tX) is given by inversion of (6.69).

Specially interesting is the case of a pair of conformally related metrics gX and gY =

e2ωgX . Then in general, for non-constant ω, only one of gX and gY can be flat, whence

proper coordinates exist only in this one.

The exceptional case is of course D0 = 1, where a proper coordinate exist for any gX ,

with gX = gX00(x)dx⊗ dx
!
= η0dtX ⊗ dtX , and the expression from (6.69) for the proper

coordinate takes the familiar form

tX =

∫ √
|gX00(x)|dx. (6.71)

Here, if and only if gX and gY have the same sign η0, they are conformally related, i.e.

gY = e2ωgX , whence the (conformal) factor

eω =
dtY
dtX

(6.72)

relates the respective proper coordinates. A particularly important case is t being a proper

time coordinate, which then is also called synchronous time.

In particular, for a D-dimensional geometry g = e2γ(x)g(0) +
∑n

i=1 e
2βi(x)g(i) with flat

g(0), the homogeneous gauge γ
!
= 0 of g(0) is called proper (coordinate) gauge, because

with g(0) = ηµνdt
µ ⊗ dtν the coordinates tµ are proper for g(0). If t0 is a proper time

coordinate, the gauge γ
!
= 0 is also called synchronous (time) gauge (see also [38]).

In the following, a metric on M0 is denoted as

g(0) = g(0)
µν(x)dx

µ ⊗ dxν . (6.73)

Particular coordinates xν , ν = 0, . . . , D0 − 1, are harmonic w.r.t. a multidimensional

metric g = e2γ(x)g(0) +
∑n

i=1 e
2βi(x)g(i), if and only if

0
!
= ∆[g]xν (6.74)
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=
1√
|g|

∂

∂xµ

(
e(D0−2)γ+diβ

i
√
|g(1)| · · ·

√
|g(n)|

√
|g(0)|g(0)µν

)
=

1

ediβi+D0γ
√
|g(0)|

∂

∂xµ

(
e(D0−2)γ+Diβ

i
√
|g(0)|g(0)µν

)
, ν = 0, . . . , D0 − 1,

where the last step exploits the homogeneity of internal geometries g(i), i = 1, . . . , n.

With f = (D0 − 2)γ + diβ
i, the condition (6.74) reads

0
!
= e2γ∆[g]xν =

g(0)νµ√
|g(0)|

∂f

∂xµ
− g(0)µλ

Γ[g(0)]νµλ , ν = 0, . . . , D0 − 1. (6.75)

Hence, for flat g(0), coordinates xν onM0 are harmonic w.r.t. g, if and only if f is constant.

Such a gauge, and in particular the homogeneous linear gauge f
!
= 0, is called harmonic

(coordinate) gauge.

Under the gauge f
!
= 0, the coordinates xν are harmonic w.r.t. g, if and only if

1√
|g(0)|

∂

∂xµ

(√
|g(0)|g(0)µν

)
= −g(0)µλ

Γ[g(0)]νµλ
!
= 0. (6.76)

Let us consider the case where g(0) is conformally flat with g(0)
µν = e2ωηµν . Then, condi-

tion (6.76) is satisfied if and only if

∂ω

∂xµ

!
= 0 , ν = 0, . . . , D0 − 1, (6.77)

whence ω constant and g(0) is flat. Let coordinates on M0 which are harmonic w.r.t. a

multidimensional metric on M in the gauge f
!
= 0 be denoted by τ ν , ν = 0, . . . , D0 − 1.

If τ 0 is a time coordinate, the gauge f
!
= 0 is also called harmonic time gauge.

7. Cosmological application III:

multidimensional solutions

Historically σ-models have turned out to be a very powerful tool in many areas of physics.

In gravity the importance was soon realized [74] in the context of solution generating

techniques [75]. More recently, σ-models have been also discussed in the context of string

theory [76, 77, 78].

The purpose of this paper is to clarify the geometric structure of the effective σ-

model for multidimensional Einstein geometry and to demonstrate its applicability in such

different directions as cosmology, (extended) string theory, and quantization of certain

higher-dimensional geometric actions.

In fact it turns out to be a very powerful tool which, on one side, allows to test the

geometric content of string and M-theory down to their concrete physical imprints in

the physical space-time and, on the other side, prepares a well defined class of classi-

cal higher-dimensional geometries for the canonical quantization program in dimension

D0 ≤ 4 whenever this is applicable to pure Einstein gravity itself. In principle all cases
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with infinite number of degrees of freedom in dimension D0 = 4 which can be canonically

quantized have some analogous cases where additional extra dimensions add only a finite

number of degrees of freedom without disturbing the integrability of the problem. These

cases include of course also recently investigated midisuperspace 4-geometries. In the case

of spherical symmetries, and more particular in the static case, one can find particular

solutions to a classical system of the multidimensional Einstein action with scalar and

antisymmetric p+ 2-form fields which are multidimensional extensions of black hole solu-

tions. It turns out that the standard surface gravity and the Hawking temperature TH as

calculated from a Komar-like integral depend sensitively on the intersection dimension of

the p-branes involved in the solution. This provides, at least in principle, an observational

window to very direct geometrical properties of possible extra dimensions. Apart from

that, the multidimensional σ-model contains all kinds of multidimensional spatially ho-

mogeneous cosmological models as degenerate minisuperspace cases with a finite number

of degrees of freedom only.

Below, the effective D0-dimensional σ-model is derived from a multidimensional action

of Einstein type in a higher dimension D, first for pure geometry, then with additional

scalar and antisymmetric p+2-form matter fields. The domains of the p+1-form potentials

of the antisymmetric p+2-forms are the world-sheets of p-branes. In extended string and

M-theory [79, 80, 81] strings are generalized to membranes as higher-dimensional objects.

Most of these unified models are modeled initially on a higher-dimensional space-time

manifold, say of dimension D > 4, which then undergoes some scheme of spontaneous

compactification.

The geometric structure of the target-space is clarified. In particular it is shown that

it is a always a homogeneous space. It is furthermore locally symmetric if and only if the

characteristic target-space vectors satisfy a particular orthogonality condition, called the

orthobrane relation whenever they are not identical. In any case, it turns out possible to

express the general exact solutions in terms of elementary functions, provided the input

parameters of the model satisfy the , whence the target space is locally symmetric.

Solutions of the corresponding field equations are discussed generally and with concrete

examples. Particular solutions for the subcases with Ricci flat internal spaces with scalar

fields only, and with intersecting p-branes are presented. In the subcase of spherically

symmetric solutions the relation to particles and black p-branes is given. Although a priori

one might admit all possible types of components of F -fields compatible with spherical

symmetry, namely, electric, magnetic and quasiscalar ones, we concentrate on true electric

and magnetic type fields, since these are the ones which admit black hole solutions.

Besides the orthobrane solutions which by now became popular in string theory, there

are further families of solutions, which have another additional symmetry, e.g. coinciding

F -field charges for the electro-magnetic solutions. In target space this additional symme-

try is expressed by a linear relation between certain column vectors of the coupling matrix.

In this case the original orthobrane conditions reduce to some weaker set of orthogonality

conditions.

In the case of static, spherical symmetric solutions it is demonstrated that the for-

mal Hawking temperature TH (as it might appear to an observer at infinity) depends
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sensitively on the intersection dimension of the p-branes. Hence solutions to the mul-

tidimensional σ-model allow to detect possible imprints from extra-dimensional internal

factor spaces within the physical dimension D0 = 4. The black hole solutions depend on

3 integration constants, related to the electric, the magnetic, and the mass charge. It is

also shown that the Hawking temperature of such black holes depends on the intersection

dimension dint of the corresponding p-branes. In an extremal limit of the charges, the

black hole temperature turns out to converge to zero for dint = 0, to a finite limit for

dint = 1, and to infinity for dint > 1.

Finally it is shown how the geometries of well known solutions in a Brans-Dicke frame

can be transformed to the physically relevant Einstein frame.

7.1 Solution with Abelian target-space

In the this section we consider the σ-model (6.56) without the Φ fields from the p+2-forms,

whence the target-space is the n+ l-dimensional Abelian one, and present a particularly

interesting vacuum solution.

We derive for D0 6= 2 an new exact Ricci flat multidimensional solution for the effective

σ-model (6.56) in the harmonic gauge (2 − D0)γ
!
= diβ

i with zero potential (6.37) and

zero Φ. The field equation then read

Gij∂µβ
i∂νβ

j + Cαβ∂µφ
α∂νφ

β = 0, µ, ν = 0, . . . , D0 − 1, (7.1)
(E)Gij∆[g(0)]βj = 0, i = 1, . . . , n, (7.2)

Cαβ∆[g(0)]φβ = 0, α = 1, . . . , l. (7.3)

In particular, we now solve these equations with flat (M0, g
(0)). In this case, there exist

g-harmonic M0-coordinates τµ, µ = 0, . . . , D0 − 1. Let g(0) = e−2γηµνdτ
µdτ ν . In such

harmonic coordinates, equations (7.2) and (7.3) are solved by

βi = biµτ
µ + ci, i = 1, . . . , n, (7.4)

φα = bn+α
µ τµ + cn+α, α = 1, . . . , l. (7.5)

We set

ϕi
µ :=

∂

∂τµ
ϕi , µ = 0, . . . , D0 − 1 . (7.6)

With (7.4), the harmonic gauge condition reads

Aµ := (E)qϕ1
µ =

∑
i

dib
i
µ

!
= 0 , µ = 0, . . . , D0 − 1. (7.7)

With the harmonic gauge constraint (7.7), Eq. (7.1) then reads

n∑
i=2

ϕi
µϕ

i
ν +

l∑
αβ=1

Cαβb
α
µb

β
ν =

n∑
i=1

dib
i
µb

i
ν +

l∑
αβ=1

Cαβb
α
µb

β
ν

!
= 0,

µ, ν = 0, . . . , D0 − 1 . (7.8)
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For convenience, one can set cA := 0, A = 1, . . . , n+ l. Then γ = 0, whence the harmonic

coordinates are simultaneously proper coordinates, and the solution reads explicitly,

g = ηµνdτ
µ ⊗ dτ ν +

n∑
i=1

e2bi
λτλ

g(i), (7.9)

with linear coefficients biµ, i = 1, . . . , n, µ = 0, . . . , D0− 1, satisfying D0 linear constraints

(7.7) (the harmonic gauge) and D0
2 quadratic constraints (7.8) (the harmonic Wheeler-de

Witt constraints).

This solution shows a generalized inflationary behaviour, which extends the familiar

notion of inflation w.r.t. time, as in cosmology, to inflation w.r.t. the internal degrees

of freedom on the D0-dimensional world manifold of an extended object. The constraint

(7.7) implies that the total (D − D0)- dimensional volume remains constant (like in a

steady state universe [82]) on the world manifold M0, although here (unlike the stationary

case [82]) individual factor spaces may undergo inflationary expansion or contraction in

particular directions on M0. In the standard cosmological case D0 = 1, this solution

agrees with the one described in [83].

7.2 Orthobrane solutions with (E)V = 0

Now we present a class of solutions with (E)V = 0, where the field equations read

Rµν [g
(0)] = ĜAB∂µσ

A∂νσ
B +

∑
s∈S

εse
2LAsσA

∂µΦs∂νΦ
s, µ, ν = 1, . . . , D0,(7.10)

ĜAB4[g(0)]σB −
∑
s∈S

εsLAse
2LCsσC

(∂Φs)2 = 0, A = 1, . . . , N, (7.11)

∂µ

(√
|g(0)|g(0)µνe2LAsσA

∂νΦ
s

)
= 0, s ∈ S. (7.12)

For the Abelian part of the target space metric we set (ĜAB) := (ĜAB)−1.

< X, Y >:= XAĜ
ABXB. (7.13)

For s ∈ S let us now consider vectors

Ls = (LAs) ∈ IRN . (7.14)

Definition: A non-empty set S is called an orthobrane index set, iff there exists a family

of real non-zero coefficients {νs}s∈S, such that

< Ls, Lr >= (LT Ĝ−1L)sr = −εs(νs)
−2δsr, s, r ∈ S. (7.15)

For s ∈ S and A = 1, . . . , N , we set

αA
s := −εs(νs)

2ĜABLBs. (7.16)

Here, (7.15) is just an orthogonality condition for the vectors Ls, s ∈ S. Note that
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< Ls, Ls > has just the opposite sign of εs, s ∈ S. With the definition above, we obtain

an existence criterion for solutions.

Theorem: Let S be an orthobrane index set with coefficients (7.16). If for any s ∈ S

there is a function Hs > 0 on M0 such that

4[g(0)]Hs = 0, (7.17)

i.e. Hs is harmonic on M0, then, the field configuration

Rµν [g
(0)] = 0, µ, ν = 1, . . . , D0, (7.18)

σA =
∑
s∈S

αA
s lnHs, A = 1, . . . , N, (7.19)

Φs =
νs

Hs

, s ∈ S, (7.20)

satisfies the field equations (7.10)-(7.12). �

This theorem follows just from substitution of (7.15)-(7.20) into the equations of mo-

tion (7.10)-(7.12). From (6.59), (6.58) and (7.13) we get

< Ls, Lr >= GijliI ljJ + Cαβλαaλβb, (7.21)

with s = (a, I) and r = (b, J) in S (a, b ∈ ∆, I ∈ Ωa, J ∈ Ωb). Here, the inverse of the

dilatonic midisuperspace metric Gij is given by

Gij =
δij
di

+
1

2−D
, (7.22)

whence, for I, J ∈ Ω, with topological numbers liI from (6.57), we obtain

GijliI ljJ = D(I ∩ J) +
D(I)D(J)

2−D
, (7.23)

which is again a purely topological number.

We set νa,I := ν(a,I). Then, due to (7.21) and (7.23), the orthobrane condition (7.15)

reads

D(I ∩ J) +
D(I)D(J)

2−D
+ Cαβλαaλβb = −ε(I)(νa,I)

−2δabδI,J , (7.24)

for a, b ∈ ∆, I ∈ Ωa, I ∈ Ωb. With (a, I) = s ∈ S, the coefficients (7.16) are

αi
s = −ε(I)GijljIν

2
a,I = ε(I)

(∑
j∈I

δi
j +

D(I)

2−D

)
ν2

a,I , i = 1, . . . , n, (7.25)

αβ
s = −ε(I)Cβγλγaν

2
a,I , β = 1, . . . , l (7.26)

With (σA) = (φi, ϕβ), according to (7.19),

βi =
∑
s∈S

αi
s lnHs, i = 1, . . . , n, (7.27)

φβ =
∑
s∈S

αβ
s lnHs, β = 1, . . . , l, (7.28)
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and the harmonic gauge reads

γ =
∑
s∈S

α0
s lnHs, (7.29)

where

α0
s := ε(I)

D(I)

2−D
ν2

a,I . (7.30)

With Ha,I := H(a,I), (7.25), (7.26), and (7.30), the solution of (7.18) - (7.20) reads

g =
(∏

s∈S

H2α0
s

s

)
g(0) +

n∑
i=1

(∏
s∈S

H2αi
s

s

)
g(i)

=

 ∏
(a,I)∈S

H
ε(I)2D(I)ν2

a,I

a,I

1/(2−D)g(0) +
n∑

i=1

 ∏
(a,I)∈S,I3i

H
ε(I)2ν2

a,I

a,I

 g(i)

 , (7.31)

with Ric[g(0)] = 0, Ric[g(i)] = 0, i = 1, . . . n,

φβ =
∑
s∈S

αβ
s lnHs = −

∑
(a,I)∈S

ε(I)Cβγλγaν
2
a,I lnHa,I , β = 1, . . . , l, (7.32)

Aa =
∑
I∈Ωa

νa,I

Ha,I

τI , a ∈ ∆, (7.33)

where forms τI are defined in (6.16), parameters νs 6= 0 and λa satisfy the orthobrane

condition (7.24), Hs are positive harmonic functions on M0, and Ric[g(i)] denotes the

Ricci-tensor of g(i). Finally recall that these solutions are subject to the orthobrane

constraints

D(I ∩ J) +
D(I)D(J)

2−D
+ Cαβλαaλβb = −ε(I)(νa,I)

−2δabδI,J , 0 6= νa,I ∈ IR , (7.34)

for a, b ∈ ∆, I ∈ Ωa, I ∈ Ωb. These condition lead to specific intersection rules for the

p-branes involved. Some concrete examples of orthobrane solutions have been elaborated

in [31].

For positive definite (Cαβ) (or (Cαβ)) and D0 ≥ 2, (7.34) implies

ε(I) = −1, (7.35)

for all I ∈ Ωa, a ∈ ∆. Then, the restriction g|MI
of the metric (7.31) to a membrane

manifold MI has an odd number of negative eigenvalues, i.e. linearly independent time-

like directions. However, if the metric (Cαβ) in the space of scalar fields is not positive

definite, then (7.35) may be violated for sufficiently negative Cαβλαaλβb < 0.

7.3 Spherically symmetric p-branes

Let us now examine static, spherically symmetric, multidimensional space-times with

M = M−1 ×M0 ×M1 × · · · ×MN , dimMi = di, i = 0, . . . , N, (7.36)
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where M−1 ⊂ IR corresponds to a radial coordinate u, M0 = S2 is a 2-sphere, M1 ⊂ IR is

time, and Mi, i > 1 are internal factor spaces. The metric is assumed correspondingly to

be

ds2 = e2α(u)du2 +
N∑

i=0

e2βi(u)ds2
i

≡ −e2γ(u)dt2 + e2α(u)du2 + e2β0(u)dΩ2 +
N∑

i=2

e2βi(u)ds2
i , (7.37)

where ds2
0 ≡ dΩ2 = dθ + sin2 θ dφ2 is the line element on S2, ds2

1 ≡ −dt2 with β1 =: γ,

and ds2
i , i > 1, are u-independent line elements of internal Ricci-flat spaces of arbitrary

dimensions di and signatures εi.

For simplicity here let us only consider a single scalar field denoted as ϕ.

An electric-type p+ 2-form FeI has a domain given by a product manifold

MI = Mi1 × · · · ×Mik , (7.38)

where

I = {i1, . . . , ik} ⊂ I0
def
= {0, 1, . . . , N}. (7.39)

The corresponding dimensions are

d(I)
def
=
∑
i∈I

di, d(I0) = D − 1. (7.40)

A magnetic-type F -form of arbitrary rank k may be defined as a form on a domain

MI with I
def
= I0 − I, dual to an electric-type form,

FmI, M1...Mk
= e−2λϕ(∗F )eI, M1...Mk

≡ e−2λϕ

√
g

k!
εM1...MkN1...ND−k

F
N1...ND−k

eI , (7.41)

where ∗ is the Hodge operator and ε is the totally antisymmetric Levi-Civita symbol.

For simplicity let us now consider just a single n-form, i.e. a single electric type and

a single dual magnetic component, whence

rankFmI = D − rankFeI = d(I), (7.42)

whence k = n in (7.41) and

d(I) = n− 1 for FeI , d(I) = d(I0)− n = D − n− 1 for FmI . (7.43)

All fields must be compatible with spherical symmetry and staticity. Correspondingly,

the vector ϕ of scalars and the p+ 2-forms valued fields depend (besides on their domain

as forms) on the radial variable u only.

Furthermore, the domain of the electric form FeI does not include the sphere M0 = S2,

and FeI is specified by a u-dependent potential form,

FeI, uL2...Ln = ∂ [uUL2...Ln] U = UL2,...,Lndx
L2 ∧ . . . ∧ dxLn . (7.44)
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Since the time manifold M1 is a factor space of MI , the form (7.44) describes an

electric (n − 2)-brane in the remaining subspace of MI . Similarly (7.41) describes a

magnetic (D − n− 2)-brane in MI .

Let us label all nontrivial components of F by a collective index s = (Is, χs), where

I = Is ⊂ I0 characterizes the subspace of M as described above and χs = ±1 according

to the rule

e 7→ χs = +1, m 7→ χs = −1. (7.45)

If 1 ∈ I, the corresponding p-brane evolves with t and we have a true electric or magnetic

field, otherwise the potential (7.44) does not depend on M0, i.e. it is just a scalar in

4 dimensions. In this case we call the corresponding electric-type F component (7.44)

electric quasiscalar and its dual, magnetic-type, F component (7.41) magnetic quasiscalar.

In general there are four types of F -field components (summarized in Table 1): electric

(E), magnetic (M), electric quasiscalar (EQ), magnetic quasiscalar (MQ). The choice

Table 1: Different types of antisymmetric p+ 2-form fields

E electric (1 ∈ I) FtuA3...An Ak (coordinate) index of MI

M magnetic (1 ∈ I) FθφB3...Bn Bl (coordinate) index of MI

EQ electric quasiscalar (1 6∈ I) FuA2...An Ak (coordinate) index of MI

MQ magnetic quasiscalar (1 6∈ I) FtθφB4...Bn Bl (coordinate) index of MI

of subsets Is is only constrained by the multidimensional decomposition condition (6.52)

for the energy-momentum tensor. Since antisymmetric p + 2-form field components of

type E and M (and type EQ and MQ respectively) just complement each other, they

should be considered as independent of each other. In the following we consider all Fs as

independent fields (up to index permutations) each with a single nonzero component.

Let us assume Ricci-flat internal spaces. With spherical symmetry and staticity all

field become independent of M0 and M1 respectively. And the variation reduces further

from M0 to the radial manifold M−1.

The reparametrization gauge on the lower dimensional manifold here is chosen as the

(generalized) harmonic one [32]. Since M−1 is 1-dimensional u is a harmonic coordinate,

�u = 0, such that

α(u) = σ0(u). (7.46)

The nonzero Ricci tensor components are

e2αRt
t = −γ′′,

e2αRu
u = −α′′ + α′

2 − γ′
2 − 2β′

2 −
N∑

i=2

diβ
′
i
2
,

e2αRθ
θ = e2αRφ

φ = e2α−2β − β′′,
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e2αRbi
aj

= −δbi
aj
β′′i (i, j = 1, . . . , N) , (7.47)

where a prime denotes d/du and the indices ai, bi belong to the i-th internal factor space.

The Einstein tensor component G1
1 does not contain second-order derivatives:

e2αG1
1 = −e2α−2β +

1

2
α′

2 − 1

2

(
γ′

2
+ 2β′

2
+

N∑
i=2

diβ
′
i
2
)
. (7.48)

The corresponding component of the Einstein equations is an integral of other components,

similar to the energy integral in cosmology.

The generalized Maxwell equations give

F uM2...Mn
eI = QeIe

−2α−2λϕ, QeI = const, (7.49)

FmI, uM1...Md(I)
= QmI

√
|gI |, QmI = const, (7.50)

where |gI | is the determinant of the u-independent part of the metric of MI and Qs are

charges. These solutions provide then the energy momentum tensors, of the electric and

magnetic p+ 2-forms written in matrix form,

e2α(TN
M [FeI ]) = −1

2
ηF ε(I)Q

2
eIe

2yeIdiag(+1, [1]I , [−1]I);

e2α(TN
M [FmI ]) =

1

2
ηF ε(I)Q

2
mIe

2ymIdiag(1, [1]I , [−1]I), (7.51)

where the first position belongs to u and f operating over MJ is denoted by [f ]J . The

functions ys(u) are

ys(u) = σ(Is)− χsλϕ. (7.52)

The scalar field contribution to the energy momentum tensor (EMT) is

e2αTN
M [ϕ] =

1

2
(ϕa)′

2
diag(+1, [−1]I0). (7.53)

The sets Is ∈ I0 may be classified by types E, M, EQ, MQ according to the description

in the previous section. Denoting Is for the respective types by IE, IM, IEQ, IMQ, we see

from (7.51) that, positive electric and magnetic energy densities require

ηF = −ε(IE) = ε(IM) = ε(IEQ) = −ε(IMQ). (7.54)

If t is the only time coordinate, (7.54) with ηF = 1 holds for any choices of Is. If there

exist other times, then the relations (7.54) constrain the subspaces where the different F

components may be specified.

Since the total EMT on the r.h.s. of the Einstein equations has the property

T u
u + T θ

θ = 0, (7.55)

the corresponding combination on the l.h.s becomes an integrable Liouville form

Gu
u +Gθ

θ = e−2α[−α′′ + β′′0 + e2α−2β0 ] = 0,

eβ0−α = s(k, u), (7.56)
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where k is an integration constant (IC) and the function s(k, ·) is defined as follows:

s(k, u)
def
=


k−1 sinh ku, k > 0

u, k = 0

k−1 sin ku, k < 0

(7.57)

Another IC is suppressed by adjusting the origin of the u coordinate.

With (7.56) the D-dimensional line element may be written in the form

ds2 =
e−2σ1

s2(k, u)

[ du2

s2(k, u)
+ dΩ2

]
+

N∑
i=1

e2βids2
i (7.58)

where σ1 has been defined in (6.8).

Let us treat the whole set of unknowns βi(u), ϕ(u) as a real-valued vector function

x(u) in an (N+1)-dimensional vector space V , with components xA = βA for A = 1, . . . , N

and xN+1 = ϕ.

Then the field equations for βi and ϕ coincide with the equations of motion corre-

sponding to the Lagrangian of a Euclidean Toda-like system

L = GABx
′Ax′

B − VQ(y), VQ(y) =
∑

s

θsQ
2
se

2ys , (7.59)

where, according to (7.54), θs = 1 if Fs is a true electric or magnetic field and θs = −1 if

Fs is quasiscalar. The nondegenerate, symmetric matrix

(GAB) =

(
Gij 0

0 1

)
, Gij = didj + diδij (7.60)

defines a positive-definite metric in V . The energy constraint corresponding to (7.59) is

E = σ′1
2
+

N∑
i=1

diβ
′2
i + ϕ′2 + VQ(y) = GABx

′Ax′
B

+ VQ(y) = 2k2signk, (7.61)

with k from (7.56). The integral (7.61) follows here from the (uu)-component of (6.45).

The functions ys(u) (7.52) can be represented as scalar products in V (recall that

s = (Is, χs)):

ys(u) = Ys,Ax
A, (Ys,A) = (diδiIs , −χsλ), (7.62)

where δiI :=
∑

j∈I δij is an indicator for i belonging to I (1 if i ∈ I and 0 otherwise).

The contravariant components of Ys are found using the matrix G
AB

inverse to GAB:

(G
AB

) =

(
Gij 0

0 1

)
, Gij =

δij

di

− 1

D − 2
(7.63)

(Ys
A) =

(
δiIs −

d(Is)

D − 2
, −χsλ

)
, (7.64)

and the scalar products of different Ys, whose values are of primary importance for the

integrability of our system, are

Ys,AYs′
A = d(Is ∩ Is′)−

d(Is)d(Is′)

D − 2
+ χsχs′λ

2. (7.65)
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7.4 Black holes with EM branes

In [27] it was shown that quasiscalar components of the F -fields are incompatible with

orthobrane black holes. Therefore let us now consider only two F -field components, Type

E and Type M according to the classification above. They will be electric as Fe and Fm

and the corresponding sets Is ⊂ I0 as Ie and Im. Then a minimal configuration (7.36) of

the manifold M compatible with an arbitrary choice of Is has the following form:

N = 5, I0 = {0, 1, 2, 3, 4, 5}, Ie = {1, 2, 3}, Im = {1, 2, 4}, (7.66)

so that

d(I0) = D − 1, d(Ie) = n− 1, d(Im) = D − n− 1, d(Ie ∩ Im) = 1 + d2;

d1 = 1, d2 + d3 = d3 + d5 = n− 2. (7.67)

The relations (7.67) show that, given D and d2, all di are known.

This corresponds to an electric (n − 2)-brane located on the subspace M2 ×M3 and

a magnetic (D − n − 2)-brane on the subspace M2 ×M4. Their intersection dimension

dint = d2 turns out to determine qualitative properties of the solutions.

The index s now takes the two values e and m and

Ye,A = (1, d2, d3, 0, 0,−λ);

Ym,A = (1, d2, 0, d4, 0, λ);

Y A
e = (1, 1, 1, 0, 0,−λ)− n− 1

D − 2
(1, 1, 1, 1, 1, 0);

Y A
m = (1, 1, 0, 1, 0, λ)− D − n− 1

D − 2
(1, 1, 1, 1, 1, 0), (7.68)

where the last component of each vector refers to xN+1 = x6 = ϕ.

In the solutions presented below the set of ICs will be reduced by the condition that

the space-time be asymptotically flat at spatial infinity (u = 0) and by a choice of scales

in the relevant directions. Namely, we put

βi(0) = 0 = ϕ(0) i = 1, 2, 3, 4, 5. (7.69)

The requirement ϕ(0) = 0 is convenient and may be always satisfied by a redefinition

of the charges. The conditions βi(0) = 0 (i > 1) mean that the real scales of the extra

dimensions are hidden in the internal metrics ds2
i independent of whether or not they are

assumed to be compact.

In the following, both cases, orthobrane solutions and solutions with degenerate charges,

are considered first generally and then for the minimal configuration (7.66)-(7.69).

7.4.1 Solutions with orthobranes

Assuming that the vectors Ys are mutually orthogonal with respect to the metric GAB,

i.e.

Ys,AYs′
A = δss′N

2
s , (7.70)
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the number of functions ys does not exceed the number of equations, and the system

becomes integrable. Due to (7.43), the norms Ns are actually s-independent:

N2
s = d(Is)

[
1− d(Is)

D − 2

]
+ λ2 =

(n− 1)(D − n− 1)

D − 2
+ λ2 def

=
1

ν
, (7.71)

ν > 0.

Due to (7.70), the functions ys(u) obey the decoupled equations

y′′s = θs
Q2

s

ν
e2ys , (7.72)

whence

e−ys(u) =

{
(|Qs|/

√
ν)s(hs, u+ us), θ = +1,

[|Qs|/(
√
νhs)] cosh[hs(u+ us)], hs > 0, θ = −1.

(7.73)

where hs and us are ICs and the function s was defined in (7.57). For the functions xA(u)

we obtain:

xA(u) = ν
∑

s

Ys
Ays(u) + cAu+ cA, (7.74)

where the vectors of ICs cA and cA satisfy the orthogonality relations cAYs,A = cAYs,A = 0,

or

cidiδiIs − λcN+1χs = 0, cidiδiIs − λcN+1χs = 0. (7.75)

Specifically, the logarithms of the scale factors βi and the scalar field ϕ are

βi(u) = ν
∑

s

[
δiIs −

d(Is)

D − 2

]
ys(u) + ciu+ ci, (7.76)

ϕ(u) = −λν
∑

s

ys(u) + cN+1u+ cN+1, (7.77)

and the function σ1 which appears in the metric (7.58) is

σ1 = − ν

D − 2

∑
s

d(Is) ys(u) + c0u+ c0 (7.78)

with

c0 =
N∑

i=1

dic
i, c0 =

N∑
i=1

dic
i. (7.79)

Finally, (7.61) now reads

E = ν
∑

s

h2
ssignhs +GABc

AcB = 2k2signk. (7.80)

The relations (7.46), (7.49), (7.50), (7.56), (7.58), (7.73)–(7.80), along with the defini-

tions (7.57) and (7.71) and the restriction (7.70), entirely determine the general solution.

For the minimal configuration (7.66)-(7.69), the orthogonality condition (7.70) reads

λ2 = d2 + 1− 1

D − 2
(n− 1)(D − n− 1) (7.81)
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In particular, in dilaton gravity n = 2, d2 = 0 and the integrability condition (7.81)

just reads λ2 = 1/(D − 2), which is a well-known relation of string gravity. The familiar

Reissner-Nordström solution, D = 4, n = 2, λ = 0, d2 = 0 does not satisfy Eq. (7.81). (It

will be recovered indeed as a degenerate case below.) Some examples of configurations

satisfying the orthogonality condition (7.81) in the purely topological case λ = 0 are

summarized in Table 2 (including the values of the constants B and C from (7.93) ). In

this case (7.81) is just a Diophantus equation for D, n and d2.

Table 2: Orthobrane solutions with λ = 0

n d(Ie) d(Im) d2 B C

D = 4m+ 2 2m+1 2m 2m m-1 1/m 1/m

(m ∈ IN)

D= 11 4 3 6 1 2/3 1/3

7 6 3 1 1/3 2/3

The solution is entirely determined by inserting (7.68) into (7.74) with cA = 0 due to

(7.69),

xA(u) = ν
∑

s

Ys
Ays(u) + cAu; e−ys(u) = (|Qs|/

√
ν)s(hs, u+ us). (7.82)

Due to (7.81) the parameter ν is

ν = 1/
√

1 + d2. (7.83)

The constants are connected by the relations

(|Qe,m|/ν) s(he,m, ue,m) = 1;

c1 + d2c
2 + d3c

3 − λc6 = 0; c1 + d2c
2 + d4c

4 + λc6 = 0;

h2
esignhe + h2

msignhm

1 + d2

+Gijc
icj + (c6)2 = 2k2signk, (7.84)

where the matrix Gij is given in (7.60) and all cA = 0 due to the boundary conditions

(7.69). The fields ϕ and F are given by Eqs. (7.49), (7.50), (7.77).

This solution contains 8 nontrivial, independent ICs, namely, Qe, Qm, he, hm and 4

others from the set cA constrained by (7.84).

For black holes, we require that all |βi| <∞, i = 2, . . . , N (regularity of extra dimen-

sions), |ϕ| < ∞ (regularity of the scalar field) and |β0| < ∞ (finiteness of the spherical

radius) as u→∞. With ys(u) ∼ −hsu, this leads to the following constraints on the ICs:

cA = −k
∑

s

(
δ1Is + νYs

Ahs

)
, (7.85)
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where A = 1 corresponds to i = 1. Via orthonormality relations (7.75) for cA, we obtain

hs = kδ1Is , (7.86)

cA = −kδA
1 + kν

∑
s

δ1IsYs
A, (7.87)

and (7.80) then holds automatically.

Let us now consider the case where (7.86) and (7.87) with δ1Is = 1 hold. After a

transformation u 7→ R, to isotropic coordinates given by the relation

e−2ku = 1− 2k/R, (7.88)

we obtain

ds2 = −1− 2k/R

PB
e P

C
m

dt2 + PC
e P

B
m

(
dR2

1− 2k/R
+R2dΩ2

)
+

5∑
i=2

e2βi(u)ds2
i , (7.89)

e2β2 = Pe
−BPm

−C , e2β3 = (Pm/Pe)
B ,

e2β4 = (Pe/Pm)C , e2β5 = Pe
CPm

B, (7.90)

e2λϕ = (Pe/Pm)2λ2/(1+d2), (7.91)

F01M3...Mn = −Qe/(R
2Pe), F23M3...Mn = Qm sin θ, (7.92)

with the notations

Pe,m = 1 + pe,m/R, pe,m =
√
k2 + (1 + d2)Q2

e,m − k;

B =
2(D − n− 1)

(D − 2)(1 + d2)
, C =

2(n− 1)

(D − 2)(1 + d2)
. (7.93)

The BH gravitational mass as determined from a comparison of (7.89) with the Schwarzschild

metric for R→∞ is

GNM = k +
1

2
(Bpe + Cpm), (7.94)

whereGN is the Newtonian gravitational constant. This expression, due to k > 0, provides

a restriction upon the charge combination for a given mass, namely,

B|Qe|+ C|Qm| < 2GNM/
√

1 + d2. (7.95)

The inequality is replaced by equality in the extreme limit k = 0. For k = 0 our BH turns

into a naked singularity (at the centre R = 0) for any d2 > 0, while for d2 = 0 the zero

value of R is not a centre (g22 6= 0) but a horizon. In the latter case, if |Qe| and |Qm|
are different, the remaining extra-dimensional scale factors are smooth functions for all

R ≥ 0.

For a static, spherical BH one can define a Hawking temperature TH := κ/2π as given

by the surface gravity κ. With a generalized Komar integral (see e.g. [84])

M(r) := − 1

8π

∫
Sr

∗dξ (7.96)
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over the time-like Killing form ξ, the surface gravity can be evaluated as

κ = M(rH)/(rH)2 = (
√
|g00|)′

/√
g11

∣∣∣
r=rH

= eγ−α|γ′|
∣∣∣
r=rH

, (7.97)

where a prime, α, and γ are understood in the sense of the general metric (7.37) and

kB is the Boltzmann constant. The expression (7.97) is invariant with respect to radial

coordinate reparametrization, as is necessary for any quantity having a direct physical

meaning. It is also invariant under conformal mappings with a conformal factor which is

smooth at the horizon.

Substituting g00 and g11 from (7.89), one obtains:

TH =
1

2πkB

1

4k

[
4k2

(2k + pe)(2k + pm)

]1/(d2+1)

. (7.98)

If d2 = 0 and both charges are nonzero, this temperature tends to zero in the extreme

limit k → 0; if d2 = 1 and both charges are nonzero, it tends to a finite limit, and in all

other cases it tends to infinity. Remarkably, it is determined by the p-brane intersection

dimension d2 rather than the whole space-time dimension D.

7.4.2 Solutions with degenerate brane charges Q2
e = Q2

m

In this degenerate case, solutions can be found which need not satisfy the orthobrane

condition (7.70). Let us suppose that two functions (7.52), say, y1 and y2, coincide up to

an addition of a constant (which may be then absorbed by re-defining a charge Q1 or Q2)

while corresponding vectors Y1 and Y2 are neither coinciding, nor orthogonal (otherwise

we would have the previously considered situation). Substituting y1 ≡ y2 into (7.62), one

obtains

(Y1,A − Y2,A)xA = 0. (7.99)

This is a constraint reducing the number of independent unknowns xA. Furthermore,

substituting (7.99) to the Lagrange equations for xA,

−(Y1,A − Y2,A)x′′
A

=
∑

s

θsQ
2
se

2ysY A
s (Y1,A − Y2,A) = 0. (7.100)

In this sum all coefficients of different functions e2ys must be zero. This yields new

orthogonality conditions

Y A
s (Y1,A − Y2,A) = 0, s 6= 1, 2, (7.101)

now for the difference Y1 − Y2 and other Ys, and with Eq. (7.71) the relation

(ν−1 − Y A
1 Y2,A)(θ1Q

2
1 − θ2Q

2
2) = 0. (7.102)

The first multiplier in (7.102) is positive (GAB is positive-definite, hence a scalar product

of two different vectors with equal norms is smaller than their norm squared). Therefore

θ1 = θ2, Q2
1 = Q2

2. (7.103)
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Imposing the constraints (7.99), (7.101), (7.103), reduces the numbers of unknowns

and integration constants, and simultaneously also reduces the number of restrictions

on the input parameters (by the orthogonality conditions (7.70)). Due to (7.103), this

is only possible when the two components with coinciding charges are of equal nature:

both must be either true electric/magnetic ones (θs = 1), or quasiscalar ones (θs = −1).

Correspondingly, we now set y(u) := ye = ym and Q2 := Q2
e = Q2

m.

For the minimal configuration (7.66)–(7.68), eq. (7.99) yields

d3β3 − d4β4 − 2λϕ = 0. (7.104)

Eqs. (7.101) are irrelevant here since we are dealing with two functions ys only. The

equations of motion for xA now take the form

xA′′ = Q2e2y(Y A
e + Y A

m ). (7.105)

Their proper combination gives y′′ = (1 + d2)Q
2e2y, whence

e−y =
√

(1 + d2)Q2s(h, u+ u1) (7.106)

where the function s is defined in (7.57) and h, u1 are ICs and, due to (7.69),√
(1 + d2)Q2s(h, u1) = 1. Other unknowns are easily determined using (7.105) and (7.69):

xA = νY Ay + cA; Y A = Y A
e + Y A

m = (1, 1, 0, 0,−1, 0); (7.107)

σ1 = −νy + c0u.

Here, as in (7.83), ν = 1/(1+d2), but it is now just a notation. The constants c0, h, c
A (A =

1, . . . , 6) and k (see (7.56)) are related by

−c0 +
5∑

i=1

dic
i = 0, c1 + d2c

2 + d3c
3 − λc6 = 0, c1 + d2c

2 + d4c
4 + λc6 = 0,

2k2signk =
2h2signh

1 + d2

(c0)2 +
5∑

i=1

di(c
i)2 + (c6)2. (7.108)

Extra-dimensional scale factors remain finite as u → umax in the case of a BH. It is

specified by the following values of the ICs:

k = h > 0, c3 = c4 = c6 = 0, c2 = −c5 = − k

1 + d2

, c0 = c1 = − d2k

1 + d2

. (7.109)

The event horizon occurs at u = ∞. After the same transformation (7.88) the metric

takes the form

ds2
D = − 1− 2k/R

(1 + p/R)2ν
dt2 + (1 + p/R)2ν

(
dR2

1− 2k/R
+R2dΩ2

)
+(1 + p/R)−2νds2

2 + ds2
3 + ds2

4 + (1 + p/R)2νds2
5 (7.110)

with the notation

p =
√
k2 + (1 + d2)Q2 − k. (7.111)
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The fields ϕ and F are determined by the relations

ϕ ≡ 0 , F01L3...Ln = − Q

R2(1 + p/R)
, F23L3...Ln = Q sin θ. (7.112)

GNM = k + p/(1 + d2), (7.113)

The Hawking temperature can be calculated as before,

T =
1

2πkB

1

4k

(
2k

2k + p

)2/(d2+1)

. (7.114)

The well-known results for the Reissner-Nordström metric are recovered when d2 = 0. In

this case T → 0 in the extreme limit k → 0. For d2 = 1, T tends to a finite limit as

k → 0 and for d2 > 1 it tends to infinity. As is the case with two different charges, T

does not depend on the space-time dimension D, but depends on the p-brane intersection

dimension d2.

7.5 Spatially homogeneous solutions

For dimension D0 = 1, the σ-model action has been derived previously in [38], [39].

In this case the harmonic gauge reads f = −γ +
∑n

i=1 diβ
i, whence in the action the

kinetic (∂γ)2 terms cancel. Thus, with g(0) = −dt⊗ dt the action describes (according to

[38], Eqs. (6.9)-(6.15) in the matter free case) the form of a classical massive particle in

minisuperspace, i.e.

S =

∫
L(f)Ndt, L = {m

2
(f)N

−2
Gijβ̇

iβ̇j − V (βi)} (7.115)

where Gij = diδij − didj,

V ((βi)) = −m
2
e2djβj

n∑
i=1

e−2βi

R[g(i)], (7.116)

and fN = e−f gauges the lapse of time.

The D-dimensional space-time manifold M may be the product of an interval of the

time axis R and n manifolds M1, . . . ,Mn, i.e.

M = R×M1 × . . .×Mn. (7.117)

The product of some of the manifolds M1, . . . ,Mk, 1 ≤ k ≤ 3, gives the external 3-

dimensional space and the remaining part Mk+1, . . . ,Mn stands for so-called internal

spaces. We suppose that the internal spaces are compact, however the models with

noncompact internal spaces are also discussed in [85], [86], [16], [32].

The manifold M is equipped with the metric

g = −e2γ(t)dt⊗ dt+
n∑

i=1

exp[2βi(t)]g(i), (7.118)
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where γ(t) is an arbitrary function determining the time t and g(i) is the metric on the

manifold Mi. Models of such type were considered previously by a number of authors for

different sources: vacuum [87], [88], [89], [90]; minimally coupled scalar field [91]; perfect

fluid [92], [93], [94], [95], [96], [97]; viscous fluid [98].

We assume that the manifolds M1, . . . ,Mn are Ricci-flat, i.e. the components of the

Ricci tensor for the metrics g(i) are zero. (The models with non Ricci-flat factor spaces

were studied by different methods in the papers [92], [99], [100], [88], [101], [86], [102], [95],

[103], [104], [105], [97].) Under this assumption the Ricci tensor for the metric (7.118)

has following non-zero components [89]

R0
0 = e−2γ

(
n∑

i=1

di(β̇
i)2 + γ̈0 − γ̇γ̇0

)
(7.119)

Rmi
ni

= e−2γ
[
β̈i + β̇i(γ̇0 − γ̇)

]
δmi
ni

(7.120)

with the definition

γ0 =
n∑

i=1

diβ
i. (7.121)

Let D := 1+
∑n

i=1 di = dimM denote the total dimension. Then, for i = 1, . . . , n, indices

mi and ni in (6.9), (6.12) run from (D −
∑n

j=i dj) to (D −
∑n

j=i dj + di).

It is well known that the isotropic cosmological model at present time gives a good

description of the observables part of the universe. On the other hand, this very fact of

our universe’s isotropy and homogeneity is puzzling [106]. Even in the papers which are

devoted to the problem of inflation, they start mainly with the metric of the isotropic

Friedmann universe [107]. However, it is possible that at early stages of its evolution the

universe exhibits an anisotropic behaviour [108]. As it was shown in [109, 110], anisotropic

cosmological models describe the most general approach to the cosmological singularity

(the initial singularity at some instant t0). Among anisotropic homogeneous models the

Kasner solution [111] represents one of the most simple vacuum solutions of the Einstein

equations. The Kasner solution is defined on a manifold

M = IR×M1 ×M2 ×M3, (7.122)

where the differentiable manifold Mi (i = 1, 2, 3) is either IR or S1.

Another very puzzling problem is the fact that the space-time of our universe is 4-

dimensional. Fashionable theories of unified physical interactions (supergravity or super-

strings [112, 113, 114]) use the Kaluza-Klein idea [115, 116] of hidden (or extra) dimen-

sions, according to which our universe at small (Planckian) scales has a dimension more

than four. If the extra dimensions are more than a mathematical construct, we should

explain what dynamical processes lead from a stage with all dimensions developing with

the same scale to the actual stage of the universe, where we have only four external di-

mensions and all internal spaces have to be compactified and contracted to unobservable

scales.

The general structure (7.117) combines both ideas, anisotropy and multidimension-

ality. There Mi (i = 1, . . . , n) are di-dimensional space of constant curvature (or, more
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generally, an Einstein space). If n = 3 and d1 = d2 = d3 = 1 or n = 2 and d1 = 2, d2 = 1

then this manifold describes an usual anisotropic homogeneous 4-dimensional space-time.

For n ≥ 2 and a total dimension D = 1 +
∑n

i=1 di > 4 we have an anisotropic multidi-

mensional space-time where one of the spaces Mi (say M1) describes our 3-dimensional

external space.

Multidimensional cosmological models of the type (7.117) (with arbitrary n) were

investigated intensively in the recent decade (according to our knowledge, starting from

the paper [117] investigating the stability of the internal spaces).

Quantization of a multidimensional model with a space-time (7.117) was first per-

formed in [118]. Beside vacuum models, there were also cosmological models considered

which contain different types of matter, and exact solutions of the Einstein equations, and

of the Wheeler-De Witt equations in the quantum case, were obtained (see [119, 120] and

the extended list of references there). Exact solutions are of special interest because they

can be used for a detailed study of evolution of the universe (for example in the approach

to the singularity), of the compactification of the internal spaces, and of the behaviour of

matter fields.

In the present paper we consider an anisotropic homogeneous universe of type (7.117),

where all Mi are Ricci-flat. If n = 3 and d1 = d2 = d3 = 1 it describes the usual 4-

dimensional Bianchi type I model. We investigate this space-time in the presence ofm non-

interacting minimally coupled scalar fields. Scalar fields are now popular in cosmology,

because in most inflationary models the presence of a scalar field provides homogeneity,

isotropy, and almost spatial flatness of the universe [107]. It was shown in the paper [121]

that for a special form of the scalar field potentials these scalar fields are equivalent to

a m-component perfect fluid. We exploit this equivalence in [121] to investigate a two-

component model (a model with 2 scalar fields). Now we shall integrate this model in

the presence of 3 scalar fields where one of them is equivalent to an ultra-stiff perfect

fluid, the second one corresponds to dust, and the third one is equivalent to vacuum. The

main features of the solutions are the following: If the parameters of the model permit

the universe to run from the singularity to infinity, then the universe has a Kasner-

like behaviour near the singularity, with isotropization when it goes to infinity. In the

3-component integrable case, the universe has de Sitter-like behaviour in the infinite

volume limit. Superficially, it seems this model is not a good candidate for a realistic

multidimensional cosmology, because of the isotropization of all directions at late times.

But we shall show that there are particular solutions, which describe a birth of the universe

from ”nothing”. The parameters of the model in this case can be chosen in such a

way that a scale factor of the external space undergoes inflation, while the other scale

factors remain compactified near Planck length. However this model is really only good,

if in addition we provide a graceful exit mechanism [122]. For some of the parameters

the infinite volume limit takes place in the Euclidean region which has asymptotically

anti-de Sitter wormhole geometry. Another interesting Euclidean solution represents an

instanton which describes tunnelling between a Kasner-like universe (a baby universe) and

an asymptotically de Sitter universe. Sewing a number of these instantons may provide

the Coleman mechanism [123] for the vanishing cosmological constant.
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The previous paper [124] has already considered multidimensional cosmological models

in the presence of a m-component perfect fluid. In the case with one non-Ricci-flat space,

say M1, for n = 2 and d1 = 2, d2 = 1, this model describes a usual 4-dimensional

Kantowski-Sachs universe (if M1 has positive constant curvature) or a Bianchi III universe

(if M1 has negative constant curvature). We also found a 3-component integrable model,

where the universe has a Kasner-like behaviour near the singularity as in the present paper,

but there is no isotropization at all. All scale factors corresponding to Ricci-flat factor

spaces Mi are frozen in the infinite volume limit, but the negative curvature space M1

grows in time. From this point of view, the model does not describe usual 4-dimensional

space-time, because of the missing isotropization, but it may be a good candidate for

a multidimensional cosmology, if all frozen internal scale factors are near Planck scale.

For a positive curvature space M1, the infinite volume limit takes place in the Euclidean

region, which there, in contrast to the present paper, has wormhole geometry only w.r.t.

the space M1, and the wormhole is asymptotically flat.

In the present paper we consider homogeneous minimally coupled scalar fields as a

matter source. Usually, real scalar fields are taken. But, it is possible that a purely

imaginary scalar field exists too. This implies scalar fields with a negative sign at the

kinetic term in the Lagrangian. Such scalar fields may arise after conformal transformation

of real scalar fields with arbitrary coupling to gravity [38], [39], [125], [36]. They appear

also in the Brans-Dicke theories after the dimensional reduction from higher dimensional

theories [114, 126, 26]. Also the C-field of Hoyle and Narlikar has a negative sign in front

of the kinetic term [127]. The authors of [128, 129] emphasize the need for scalar fields

with negative kinetic terms in multidimensional theories in order to fit the observable

data (see also a discussion of this topic in [130]). As we will show here, in the particular

case of constant ϕ, the imaginary scalar field is equivalent to a negative cosmological

constant which results in an anti-de Sitter universe. In what follows we do not exclude

the possible existence of imaginary scalar fields, whence in our paper we consider real as

well as imaginary scalar fields.

We proceed as follows. In Sect. 7.5.1 we describe our model and get an effective perfect

fluid Lagrangian, exploiting the equivalence between an m-component perfect fluid and m

non-interacting scalar fields with a special class of potentials. In Sect. 7.5.2 we investigate

the general dynamics of the universe and its asymptotic behaviour. In Sect. 7.5.3 clas-

sical solutions for the integrable 3-component models are obtained. Classical wormhole

solutions are obtained in Sect. 7.5.4 where it is also shown that they are asymptotically

anti-de Sitter wormholes. Section 7.5.5 is devoted to the reconstruction of the scalar field

potentials. Solutions to the quantized models are presented in Sect. 7.5.6.
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7.5.1 Multi-component perfect fluid cosmology

Let us consider a cosmological model with a multidimensional metric denoted as

g = gMNdx
M ⊗ dxN = −e2γ(τ)dτ ⊗ dτ +

n∑
i=1

e2βi(τ)g(i), (7.123)

where, for i = 1, . . . , n, g(i) = g
(i)
minidx

mi ⊗ dxni , mi, ni = 1, . . . , di, is the metric form of

the Ricci-flat factor space Mi of dimension di.

Rmini

[
g(i)
]

= 0, i = 1, . . . n. (7.124)

The action of the model be

S =
1

2κ2

∫
dDx

√
|g|R[g] + Sϕ + SGH, (7.125)

where SGH is the standard Gibbons-Hawking boundary term, κ2 is the gravitational cou-

pling constant in dimension D =
∑n

i=1 di + 1, and Sϕ =
∑m

a=1 S
(a)
ϕ is the action of m

non-interacting minimally coupled homogeneous scalar fields

S(a)
ϕ = −

∫
dDx

√
|g|
[
gMN∂Mϕ

(a)∂Nϕ
(a) + U (a)(ϕ(a))

]
. (7.126)

For the metric (7.123) the action (7.125) reads

S = µ

∫
dτLs, (7.127)

with the Lagrangian

Ls =
1

2
e−γ+γ0

(
Gijβ̇

iβ̇j + κ2

m∑
a=1

(ϕ̇(a))2

)
− κ2eγ+γ0

m∑
a=1

U (a)(ϕ(a)). (7.128)

Here γ0 =
∑n

i=1 diβ
i and µ =

∏n
i=1 Vi/κ

2 where Vi is the volume of the finite Ricci-flat

spaces (Mi, g
(i)). The components of the minisuperspace metric read

Gij = diδij − didj. (7.129)

As in [121] we subject the scalar fields to the perfect fluid energy-momentum constraints

P (a) =
(
α(a) − 1

)
ρ(a), (7.130)

with constants α(a), a = 1, . . . ,m, and the energy densities

ρ(a) ≡ −T (a)0

0 =
1

2
e−2γ(ϕ̇(a))2 + U (a)(ϕ(a)) (7.131)
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and momenta

P (a) ≡ T (a)M

M =
1

2
e−2γ(ϕ̇(a))2 − U (a)(ϕ(a)), M = 1, . . . , D − 1 , (7.132)

according to the Lagrangian (7.128). In [121] it was proved that, for cosmological mod-

els with a metric (7.123), the presence of m non-interacting scalar fields satisfying the

relations (7.130) is equivalent to the presence of an m-component perfect fluid with a

Lagrangian

Lρ =
1

2
e−γ+γ0Gijβ̇

iβ̇j − κ2eγ+γ0

m∑
a=1

ρ(a), (7.133)

and energy densities of the form

ρ(a) = A(a)V −α(a)

, a = 1, . . . ,m, (7.134)

with constants A(a) and a spatial volume scale

V = eγ0 =
n∏

i=1

adi
i (7.135)

defined by the scale factors ai = eβi
, i = 1, . . . , n. Note, that the total spatial volume is

Vtot = µ ·V . The energy density ρ(a) is then connected with the pressure P (a) via (7.130),

and equations (7.131) and (7.132) imply α(a)ρ(a) = e−2γ(ϕ̇(a))2. So, for real scalar fields

and positive α(a), the energy density of the perfect fluid is positive. But, keeping in mind

the possibility of imaginary scalar fields (see Introduction), for the general model we shall

also consider the case ρ(a) < 0. Then, the constants A(a) may have any sign.

Assuming the speed of sound in each component of the perfect fluid to be less than

the speed of light,

−|ρ(a)| ≤ P (a) ≤ |ρ(a)|, a = 1, . . . ,m. (7.136)

With (7.130) this implies the inequalities

0 ≤ α(a) ≤ 2, a = 1, . . . ,m. (7.137)

Note that, with ρ =
∑m

a=1 ρ
(a) and P =

∑m
a=1 P

(a), the energy dominance condition

requires only −|ρ| ≤ P ≤ |ρ|, rather than (7.136). In this paper however, although

it might be possible to generalize results for arbitrary α(a), for simplicity we keep the

assumption (7.136) in order to make use of the inequalities (7.137).

Exploiting the mentioned equivalence between scalar fields and perfect fluid, we in-

vestigate the dynamics of the universe via the Euler-Lagrange equations of (7.133), and

reconstruct the scalar field potentials U (a)(ϕ(a)) satisfying the perfect fluid constraint

(7.130).
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7.5.2 General multidimensional dynamics

In the harmonic time gauge γ = γ0 =
∑n

i=1 diβ
i (see e.g. [118], [38]), the Lagrangian

(7.133) with energy densities (7.134) just reads

Lρ =
1

2
Gijβ̇

iβ̇j − κ2e2γ0

m∑
a=1

ρ(a). (7.138)

Then the corresponding scalar (zero energy) constraint can be imposed as

1

2
Gijβ̇

iβ̇j + κ2e2γ0

m∑
a=1

ρ(a) = 0. (7.139)

The minisuperspace metric may be diagonalized (see also [118]) to

G = ηkldz
k ⊗ dzl = −dz0 ⊗ dz0 +

n−1∑
i=1

dzi ⊗ dzi, (7.140)

where

z0 = q−1

n∑
j=1

djβ
j = q−1 lnV, (7.141)

zi = [di/ ΣiΣi+1]
1/2

n∑
j=i+1

dj

(
βj − βi

)
, (7.142)

i = 1, . . . , n− 1, and

q := [(D − 1)/(D − 2)]1/2, Σk :=
n∑

i=k

di . (7.143)

With the aid of these transformations the Lagrangian (7.138) and the scalar constraint

(7.139) can be rewritten as

Lρ =
1

2
ηklż

kżl − κ2

m∑
a=1

A(a) exp(k(a)qz0), (7.144)

1

2
ηklż

kżl + κ2

m∑
a=1

A(a) exp(k(a)qz0) = 0 (7.145)

respectively. Here, k(a) := 2−α(a) (a = 1, . . . ,m), whence the inequalities (7.137) for α(a)

hold also for k(a),

0 ≤ k(a) ≤ 2. (7.146)

The equations of motion for zi, i = 1, . . . , n− 1, simply read

z̈i = 0, (7.147)
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and readily yield

zi = piτ + qi, (7.148)

where τ is the harmonic time, pi and qi are constants. Clearly the geometry is real if pi

and qi are real. The dynamics of z0 is then given by the scalar constraint (7.145), which

may now be written as

−1

2
(ż0)2 + ε+ κ2

m∑
a=1

A(a) exp(k(a)qz0) = 0, (7.149)

for a real geometry with

ε :=
1

2

n−1∑
i=1

(pi)2 ≥ 0. (7.150)

The coordinate transformations (7.141) and (7.142) can be written as

zk =
n∑

i=1

tkiβ
i , k = 0, . . . , n− 1, (7.151)

whence the inverse is given by

βi =
n−1∑
k=0

t̄ikz
k , i = 1, . . . , n. (7.152)

For i = 1, . . . , n, with t0i = di/q and t̄i0 = [q(D − 2)]−1 we obtain the scale factors

ai = AiV
1/(D−1)eαiτ , (7.153)

where

Ai := eγi

, γi :=
n−1∑
l=1

t̄ilq
l, αi :=

n−1∑
l=1

t̄ilp
l. (7.154)

The parameters αi satisfy the relations

n∑
i=1

diα
i = 0, (7.155)

n∑
i=1

di(α
i)2 =

n−1∑
l=1

(pl)2 = 2ε , (7.156)

and, analogously the parameters γi fulfil

n∑
i=1

diγ
i = 0, (7.157)

n∑
i=1

di(γ
i)2 =

n−1∑
l=1

(ql)2. (7.158)

From the definition (7.154) and the relation (7.157) it follows that

n∏
i=1

Adi

i = 1. (7.159)
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Note that using the constraints (7.155) and (7.159) the equation (7.153) yields again

(7.135), i.e.
∏n

i=1 a
di

i = V . Recall that τ in (7.153) is the harmonic time. The synchronous

and harmonic times are related by

t = ±
∫
eγ0dτ + t0 = ±

∫
V dτ + t0. (7.160)

The expression (7.153) shows that the general model does not belong to a class with static

internal spaces (see e.g. [131]), but just for ε = 0 ( i.e. αi = 0, i = 1, . . . , n), there is a

solution

ai = AiV
1/(D−1), i = 1, . . . , n, (7.161)

which is isotropic.

In order to find the dynamical behaviour of the universe we should now solve the

constraint (7.149), i.e. the mechanical energy conservation equation

ε = T + U (7.162)

with kinetic energy T := 1
2
(ż0)2 and potential U := −κ2

∑m
a=1A

(a) exp(k(a)qz0). Depend-

ing on the parameters A(a) and their signs, the potential U may exhibit a rich structure

with several extrema, and a classical Lorentzian trajectory is bound by possible turning

points at ε = U . Since the general dynamics is very complex, we investigate the asymp-

totic behaviour of our model universe in the limit of large spatial geometries V →∞ and

near the singularity V → 0. Without restriction we suppose now

0 ≤ k(1) < . . . < k(m) ≤ 2. (7.163)

1. Limit V →∞: In the limit V → ∞ (i.e. z0 → ∞) the term −κ2A(m) exp(k(m)qz0)

dominates the potential U , whence, for k(m) 6= 0, there are two cases to be distinguished:

i) A(m) > 0: Here, for V → ∞, the term ε may be neglected. So, the constraint

equation (7.162) has the asymptotic solution

eqz0 = V ≈ (2κ2A(m))−1/k(m)

(q̄|τ |)−2/k(m)

, (7.164)

with 2q̄ := k(m)q, where (without restriction) we have chosen initial conditions such that

V →∞ at τ → 0, when according to (7.153) the system is subject to an isotropization,

ai ∼ V 1/(D−1), V →∞, i = 1, . . . , n . (7.165)

In this limit the harmonic and synchronous times are connected by

|τ | ∼ |t|k(m)/(k(m)−2) , k(m) 6= 2 , (7.166)

|τ | ∼ exp (−
√

2κ2A(m)q|t|) , k(m) = 2 . (7.167)

So, the synchronous time evolution of the spatial volume is (asymptotically for t → ∞)

given by

V ∼ |t|2/α(m)

, k(m) 6= 2 , (7.168)

V ∼ exp (
√

2κ2A(m)q|t|), k(m) = 2 , (7.169)
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with scale factors (according to isotropization)

ai ∼ |t|2/α(m)(D−1) , k(m) 6= 2 , (7.170)

ai ∼ exp (

√
2κ2A(m)q

D − 1
|t|) , k(m) = 2 . (7.171)

Taking a usual anisotropic space-time model (D = 4, n = 3, d1 = d2 = d3 = 1) then for

large (synchronous) times the formulas (7.170) and (7.171) yield scale factors ai ∼ |t|2/3

for k(m) = 1 (dust) and ai ∼ exp (
√
κ2A(m)/3|t|) for k(m) = 2 (vacuum). Asymptotically,

power-law inflation (with power p > 1) takes place for 0 < α(m) < 2/(D − 1), and

α(m) = 2/(D − 1) yields a generalized Milne universe.

ii) A(m) < 0: Here, the Lorentzian region has a boundary at the turning point Vmax of

the volume scale, which in the large energy limit ε→∞ is asymptotically given as

Vmax ≈
[

ε

κ2|A(m)|

]1/k(m)

. (7.172)

The region with V > Vmax is the Euclidean sector. For V >> Vmax, we obtain the

asymptotically isotropic solution

ai ∼ V 1/(D−1) ≈
[√

2κ2|A(m)|q̄|τ |
]−2/k(m)(D−1)

. (7.173)

In the Euclidean region, we obtain a classical wormhole w.r.t. each factor space. With

constants of integration (in (7.148)) pi = 0 (i.e. αi = 0), i = 1, . . . , n, the wormhole takes

its most simple and symmetric form. Then the throats are given by

a(th)i ≈ Ai

[
ε/κ2|A(m)|

]1/k(m)(D−1)
. (7.174)

In the case k(m) = 2 we obtain asymptotically (for t→∞) anti-de Sitter wormholes with

synchronous time scale factors

ai ∼ exp (

√
2κ2|A(m)|q
D − 1

|t|) , i = 1, . . . , n . (7.175)

2. Limit V → 0: For k(1) 6= 0, in the small volume limit V → 0, i.e. z0 → −∞, the

potential vanishes U → 0. So, for ε > 0, we obtain (asymptotically for t → 0) a (multi-

dimensional) Kasner universe [83, 89], with scale factors

ai ∼ |t|ᾱ
i

, i = 1, . . . , n . (7.176)

with parameters ᾱi satisfying

n∑
i=1

diᾱi = 1 ,
n∑

i=1

di(ᾱi)2 = 1 . (7.177)
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If k(1) = 0, then U → −κ2A(1) for z0 → −∞. Here, for E := ε + κ2A(1) > 0, we obtain

(asymptotically for t → 0) a generalized Kasner universe [83], i.e. scale factors (7.176)

with parameters ᾱi satisfying

n∑
i=1

diᾱi = 1 ,
n∑

i=1

di(ᾱi)2 = 1− ᾱ2, (7.178)

with the parameter ᾱ→ 0 for A(1) → 0.

In the exceptional case E = ε + κ2A(1) = 0 the term of the matter component a = 2

dominates the constraint (7.149), whence we obtain (compare also [121])

V ∼ t2/α(2)

, (7.179)

ai ∼ t2/[(D−1)α(2)] exp

{
αif(α(2))t

− 2−α(2)

α(2)

}
, i = 1, . . . , n , (7.180)

where f(x) :=
(

2−x
x

) (2−x)
x

[
2

(2−x)2q2κ2A(2)

] 1
x
. In another exceptional case where ε = 0 (i.e.

αi = 0, i = 1, . . . , n) the universe is isotropic everywhere, i.e. ai ∼ V 1/D−1, i = 1, . . . , n.

If, for example, k(1) = 0 (and A(1) = 0) we obtain from (7.179) or (7.180)

ai ∼ t2/[(D−1)α(2)] . (7.181)

7.5.3 Integrable 3-component model: Classical solutions

In this section, we consider the integrable case of a three-component perfect fluid (m = 3)

where one of them (a = 1) is ultra-stiff matter (k(1) = 0, α(1) = 2), the second one (a = 2)

is dust (k(2) = 1, α(2) = 1), and the third one (a = 3) is vacuum (k(3) = 2, α(3) = 0).

The case k(1) = 0, k(3) = 2k(2) with 0 < k(2) ≤ 2 is also included if one substitutes q by

q̄ = k(2)q.

The constraint equation (7.149) reads in this case

−1

2

(
ż0
)2

+ ε+ κ2A(1) + κ2A(2)eqz0

+ κ2A(3)e2qz0

= 0 (7.182)

and can be rewritten like

E =
1

2

(
ż0
)2

+ U(z0) , (7.183)

where

E := ε+ κ2A(1) (7.184)

and the potential U(z0) is

U(z0) := −Beqz0 − Ce2qz0

(7.185)

with the definitions B := κ2A(2) and C := κ2A(3).

As mentioned in the introduction, for a complete description of the model the param-

eters E, B, and C are considered to take positive and negative values. Then, we have four
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qualitatively different shapes of the potential (7.185) (see Fig. 7 and Fig. 8). For each of

them, we shall solve the constraint equation separately. Eq. (7.183) integrates to∫
dV

V
√
E +BV + CV 2

= ±
√

2q(τ − τ0) , (7.186)

where τ is the harmonic time coordinate, and τ0 is a constant of integration.

i) B > 0, C > 0 (see Fig. 7): The solutions of equations (7.186) are

V =
1

B

1

q2

2

[
f 2 − 2C

q2B2

] , E = 0, (7.187)

V =
4Ef

(B − f)2 − 4EC
, E > 0, (7.188)

V =
2|E|

B +
√
|∆|f

, E < 0, (7.189)

where ∆ := 4EC −B2 (|∆| = B2 + 4|E|C for E < 0) and

f = τ − τ0, E = 0,

√
2C

qB
≤ |τ − τ0| < +∞ , (7.190)

f = exp
(√

2Eq(τ − τ0)
)
, E > 0, ln

(
B + 2

√
EC
)
≤ ln f < +∞ , (7.191)

f = sin
(√

2|E|q(τ − τ0)
)
, E < 0, − arcsin

(
B√
|∆|

)
≤ arcsin f ≤ π

2
. (7.192)

The synchronous and harmonic time coordinate are related via

τ − τ0 =

√
2C

qB
coth

(√
C

2
qt

)
, E = 0, (7.193)

exp
(√

2Eq(τ − τ0)
)

= B +
√

4EC coth

(√
C

2
qt

)
, E > 0, (7.194)

tan
(√

|E|/2q(τ − τ0)
)

=

√
|∆|
B

[√
4|E|C
|∆|

coth

(√
C

2
qt

)
− 1

]
, E < 0. (7.195)

Using these relations, we obtain the expressions for the volume of the universe in syn-

chronous time:

V =
B

C
sinh2

(√
C

2
qt

)
, E = 0, |t| <∞, (7.196)

V =
1

C

[
B +

√
4EC coth

(√
C

2
qt

)]
sinh2

(√
C

2
qt

)
, E > 0, 0 ≤ t < +∞,(7.197)

V =
2|E|(1 + tan2(y/2))

B(1 + tan2(y/2)) + 2
√
|∆| tan(y/2)

, E < 0, (7.198)
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where tan(y/2) = tan
(√

|E|/2q(τ − τ0)
)

is given by (7.195). Expression (7.198) can be

written in a more convenient way if the parameter τ0 is chosen such that equation (7.189)

is symmetric with respect to the turning point V0 =
(
−B +

√
|∆|
)
/2C, namely

V =
2|E|

B +
√
|∆| cos

(√
2|E|qτ

) , |τ | < 1√
2|E|q

[
π

2
+ arcsin

(
B√
|∆|

)]
. (7.199)

In this case,

tan
(√

|E|/2qτ
)

=

√
4|E|C√
|∆| −B

tanh

(√
C

2
qt

)
(7.200)

and for the volume results

V =
1

2C

[√
|∆| −B +

(√
|∆|+B

)
tanh2

(√
C

2
qt

)]
cosh2

(√
C

2
qt

)
, |t| <∞.

(7.201)

The region V < V0 is the Euclidean sector and we obtain the instanton by analytic

continuation t→ −it in formula (7.201):

V =
1

2C

[√
|∆| −B −

(√
|∆|+B

)
tan2

(√
C

2
qt

)]
cos2

(√
C

2
qt

)
(7.202)

with |t| ≤ 2√
2Cq

arctan

√√
|∆|−B√
|∆|+B

.

On the quantum level, this instanton is responsible for the birth of the universe from

“nothing”.

Figure 7: The potential U0(z
0) (solid line) and the energy levels E (dashed lines) in the

cases B,C > 0 and B,C < 0. Lorentzian regions exist for E > U0(z
0).
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ii) B < 0, C > 0 (see Fig. 8): In this case, the maximal value of the potential U(z0) is

Um = B2/4C at z0
m = 1

q
ln (|B|/2C) and for 0 < E < Vm we have two turning points,

namely:

V
(1,2)
0 =

(
|B| ±

√
|∆|
)
/2C , (7.203)

where |∆| = B2 − 4EC. Classical motion takes place either for 0 ≤ V ≤ V
(1)
0 or for

V
(2)
0 ≤ V < +∞.

If E ≤ 0, we have one turning point only, namely

V0 = |B|/C, E = 0, (7.204)

V0 =
(
|B|+

√
|∆|
)
/2C, E < 0 , (7.205)

where |∆| = B2 + 4|E|C and classical motion takes place for V ≥ V0.

The solutions of the equation (7.186) read

V =
1

|B|
1

q2

2

(
2C

B2q2 − f 2
) , E = 0, (7.206)

V =
4Ef

(|B|+ f)2 − 4EC
, 0 < E < Um, 0 ≤ V ≤ V

(1)
0 , (7.207)

V =
4Ef

4EC − (|B| − f)2
, 0 < E < Um, V

(2)
0 ≤ V < +∞, (7.208)

V =
4Ef

(|B|+ f)2 − 4EC
, E > Um, (7.209)

V =
2|E|√

|∆|f − |B|
, E < 0, (7.210)

where

f = τ − τ0, E = 0, (7.211)

|τ − τ0| <
√

2C/q|B|,

f = exp
(√

2Eq(τ − τ0)
)
, 0 < E < Um, V ≤ V

(1)
0 , (7.212)

ln
√
|∆| ≤ ln f < +∞,

f = exp
(√

2Eq(τ − τ0)
)
, 0 < E < Um, V ≥ V

(2)
0 , (7.213)

ln
(
|B| −

√
4EC

)
≤ ln f ≤ ln

√
|∆|,

f = exp
(√

2Eq(τ − τ0)
)
, E > Um, (7.214)

ln
(
−|B|+

√
4EC

)
≤ ln f < +∞,

f = sin
(√

2|E|q(τ − τ0)
)
, E < 0, (7.215)

arcsin
|B|√
|∆|

≤ arcsin f ≤ π

2
.
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Figure 8: The potential U0(z
0) (solid line) and the energy levels E (dashed lines) in the

cases B > 0, C < 0 and B < 0, C > 0. In the former case we get a potential well, and

in the latter case we obtain a potential barrier. Lorentzian regions exist for E > U0(z
0).

Here, Um = B2/4C and z0
m = 1

q
ln |B/2C|.

The harmonic and synchronous time coordinates are related via

τ =
2C

|B|q
tanh

(√
C

2
qt

)
, E = 0, (7.216)

f =
√

4EC cot

(√
C

2
qt

)
− |B|, 0 < E < B2/4C, V < V

(1)
0 ,(7.217)

f = −
√

4EC tanh

(√
C

2
qt

)
+ |B|, 0 < E < B2/4C, V > V

(2)
0 ,(7.218)

f =
√

4EC coth

(√
C

2
qt

)
− |B|, E > B2/4C, (7.219)

tan
(√

|E|/2qτ
)

=

√
4|E|C√
|∆|+ |B|

tanh

(√
C

2
qt

)
, E < 0, (7.220)

where in (7.216) and (7.220) the constant τ0 is chosen such that the expressions are

symmetric with respect to the turning point at the minimum. Then, the volume of the

universe is

V =
|B|
C

cosh2

(√
C

2
qt

)
, E = 0, |t| < +∞, (7.221)
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V =
1

C

[
√

4EC coth

(√
C

2
qt

)
− |B|

]
sinh2

(√
C

2
qt

)
, (7.222)

0 < E < B2/4C, V < V
(1)
0 , 0 ≤ t ≤ 2√

2Cq
arcoth

|B|+
√
|∆|√

4EC
,

V =
1

2C

[
|B|+

√
|∆| −

(
|B| −

√
|∆|
)

tanh2

(√
C

2
qt

)]
cosh2

(√
C

2
qt

)
, (7.223)

0 < E < B2/4C, V > V
(2)
0 , |t| < +∞

V =
1

C

[
√

4EC coth

(√
C

2
qt

)
− |B|

]
sinh2

(√
C

2
qt

)
, (7.224)

E > B2/4C, 0 ≤ t < +∞

V =
1

2C

[√
|∆|+ |B|+

(√
|∆| − |B|

)
tanh2

(√
C

2
qt

)]
cosh2

(√
C

2
qt

)
, (7.225)

E < 0, |t| < +∞.

Eqs. (7.221), (7.223), and (7.225) are written in a symmetric way with respect to the

turning point at t = 0. The instanton solutions can be obtained by analytic continuation

of these symmetric expressions and result in:

V =
|B|
C

cos2

(√
C

2
qt

)
, E = 0, |t| ≤ π/

√
2Cq, (7.226)

V =
1

2C

[
|B|+

√
|∆|+

(
|B| −

√
|∆|
)

tan2

(√
C

2
qt

)]
cos2

(√
C

2
qt

)
, (7.227)

0 < E < B2/4C (|∆| = B2 − 4EC), |t| ≤ π/
√

2Cq,

V =
1

2C

[
|B|+

√
|∆|+

(
|B| −

√
|∆|
)

tan2

(√
C

2
qt

)]
cos2

(√
C

2
qt

)
, (7.228)

E < 0 (|∆| = B2 + 4|E|C), |t| ≤ 2√
2Cq

arctan

√√
|∆|+ |B|√
|∆| − |B|

.

In equation (7.227), the instanton is symmetric with respect to the turning point V
(2)
0 .

For the same instanton but now symmetric with respect to the turning point at V
(1)
0 , we

have

V =
1

2C

[
|B| −

√
|∆|+

(
|B|+

√
|∆|
)

tan2

(√
C

2
qt

)]
cos2

(√
C

2
qt

)
, (7.229)

0 < E < B2/4C, |t| ≤ π/
√

2Cq.

All the instantons (7.226) to (7.229) are responsible on the quantum level for the birth

of the universe from “nothing”. The instanton (7.227), (7.229) is of special interest. Its

qualitative shape is seen in Fig. 9 where Vmin = V
(1)
0 and Vmax = V

(2)
0 . The instanton

describes tunneling between a multidimensional Kasner-like universe (a baby universe)

and a multidimensional de Sitter universe because, as was mentioned in Sect 7.5.2 and as
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we shall demonstrate more precisely latter, the limit V → 0 corresponds to a Kasner-like

universe and in the limit V →∞ we obtain an (isotropic) de Sitter universe (in [132] to

[135] analogous types of an instanton describing tunneling between a Friedmann universe

and a de Sitter universe were obtained for a different model). The instanton may also

represent the birth (demise) of a de Sitter universe (see (7.227)) and a baby universe (see

(7.229)) from (into) “nothing”. As was demonstrated in [132, 133], the instanton may

be extended beyond V = Vmin,max gluing together a number of Euclidean manifolds (see

Fig. 10). Such gluing may provide the Coleman mechanism [123] that establishes the

vanishing of the cosmological constant.

Figure 9: The qualitative shape of the instanton (7.227) (or (7.229)). The instanton

describes tunnelling between a Kasner-like (baby) universe and a de Sitter universe.

Figure 10: Examples of instantons constructed by sewing together several copies of the

the instanton illustrated in Fig. 9. Such instantons may describe tunnelling between (a)

Kasner and de Sitter universe, (b) two Kasner universes, (c) two de Sitter universes.
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The case with E = B2/4C is degenerated. Here, two turning points coincide with

each other: V
(1)
0 = V

(2)
0 ≡ V0 = |B|/2C. In this case, we obtain with the synchronous

time coordinate t for the two volumes the expressions

V =
2E

|B|

[
1− exp

(
− |B|√

2E
qt

)]
, 0 ≤ t < +∞, (7.230)

which describes an infinitely long lasting rolling down from the unstable equilibrium

position V0 to the singularity V = 0 and

V =
2E

|B|

[
1 + exp

(
|B|√
2E

qt

)]
, |t| < +∞ (7.231)

describing the infinitely long lasting rolling down with V →∞.

To obtain solutions in the two remaining cases B > 0, C < 0 (see Fig. 8) and

B < 0, C < 0 (see Fig. 7), it is not necessary to solve equation (7.186) again. We

can instead take the solutions found already in subsections i) and ii). It is clear that

the Euclidean solutions obtained there are Lorenzian ones here and vice versa Lorenzian

solutions of subsections i) and ii) are Euclidean ones here. What we have to do is the evi-

dent substitutions B → |B|, C → |C|, and E → −E where it is necessary. For example:

iii) B > 0, C < 0: From (7.226), (7.228), and (7.229), we obtain respectively

V =
B

|C|
cos2

(√
|C|/2qt

)
, E = 0, |t| ≤ π/q

√
2|C|, (7.232)

V =
1

2|C|

[√
|∆|+B −

(√
|∆| −B

)
tan2

(√
|C|/2qt

)]
cos2

(√
|C|/2qt

)
,(7.233)

E > 0, |t| ≤ 2√
2|C|q

arctan
[(√

|∆|+B
)
/
(√

|∆| −B
)]1/2

,

V =
1

2|C|

[
B −

√
|∆|+

(
B +

√
|∆|
)

tan2
(√

|C|/2qt
)]

cos2
(√

|C|/2qt
)
,(7.234)

−B2/4|C| < E < 0, |t| < π/
√

2|C|q .

Solution (7.233) is symmetric with respect to the classical turning point. To investigate

the limit |t| → 0 it is better to give another representation of the same solution, namely

V =
1

|C|

[
B +

√
4E|C| cot

(√
|C|/2qt

)]
sin2

(√
|C|/2qt

)
, (7.235)

E > 0, 0 ≤ t ≤ 2√
2|C|q

arctan

√
|∆| −B√
4E|C|

.

In this case, the harmonic time coordinate and the synchronous one are related via

exp
(√

2Eq(τ − τ0)
)

= B +
√

4E|C| cot
(√

|C|/2qt
)
. (7.236)
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Equation (7.234) is symmetric with respect to the turning point V
(1)
0 =

(
B −

√
|∆|
)
/2|C|.

Its analytic continuation gives a “parent instanton” (see (7.222)) with

V =
1

|C|

[√
4EC coth

(√
|C|/2qt

)
−B

]
sinh2

(√
|C|/2qt

)
, (7.237)

−B2/4|C| < E < 0, 0 ≤ t ≤ 2√
2|C|q

arcoth
B +

√
|∆|√

4EC
,

which is responsible for the birth of a baby universe from “nothing”. The Lorenzian solu-

tion (7.234) symmetrically written with respect to the turning point V
(2)
0 =

(
B +

√
|∆|
)
/2|C|

reads (see (7.227))

V =
1

2|C|

[
B +

√
|∆|+

(
B −

√
|∆|
)

tan2
(√

|C|/2qt
)]

cos2
(√

|C|/2qt
)
,(7.238)

−B2/4|C| < E < 0, |t| ≤ π/
√

2|C|q.

iv) B < 0, C < 0: Here, a Lorenzian region exists for E > 0 only. From equation (7.186),

we obtain

V =
1

|C|

[
4E|C| cot

(√
|C|/2qt

)
− |B|

]
sin2

(√
|C|/2qt

)
, (7.239)

E > 0, 0 ≤ t ≤ 2√
2|C|q

arccot

√
|∆|+ |B|
4E|C|

and the equation relating the harmonic time coordinate and the synchronous one reads

exp
(√

2Eq(τ − τ0)
)

=
√

4E|C| cot
(√

|C|/2qt
)
− |B|. (7.240)

These equations are useful for the investigation of the small time limit |t| → 0.

To obtain an instanton solution (wormhole) it is necessary to rewrite equation (7.239)

symmetrically with respect to the classical turning point V0 =
(
−|B|+

√
|∆|
)
/2|C|. We

can reformulate equation (7.239) or use directly equation (7.202). The result is

V =
1

2|C|

[√
|∆| − |B| −

(√
|∆|+ |B|

)
tan2

(√
|C|/2qt

)]
cos2

(√
|C|/2qt

)
,(7.241)

E > 0, |t| ≤ 2√
2|C|q

arctan

√√
|∆| − |B|√
|∆|+ |B|

.

We shall investigate now the small time limit |t| → 0 for Lorentzian solutions. As we

shall see, it corresponds to the vanishing volume limit V → 0 and takes place for E ≥ 0

if B,C > 0 or B > 0, C < 0 and for E > 0 if B,C < 0 or B < 0, C > 0 (see Fig. 7 and

Fig. 8). First, we consider the case of positive energies E > 0. As follows from (7.194),

(7.217), (7.236), and (7.240)

exp
(√

2Eqτ
)
∼ t−1, t→ 0 (7.242)
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and with the help of equations (7.153), (7.155), and (7.156) we obtain for the scale factors

in this limit the expressions

ai ≈ Āit
ᾱi

, t→ 0, (7.243)

where

ᾱi =
1

D − 1
− 1√

2Eq
αi (7.244)

and the parameters satisfy the conditions

n∑
i=1

diᾱ
i = 1, (7.245)

n∑
i=1

di(ᾱ
i)2 = 1− 1

q2

κ2A(1)

ε+ κ2A(1)
→ 1 for A(1) → 0 (7.246)

in accordance with the Eqs. (7.176) to (7.178). For the volume of the universe, we obtain

in this limit

V ∼ t, t→ 0. (7.247)

Thus, for positive energy, E > 0, and small synchronous times the universe behaves like

the Kasner universe.

Now, we consider the exceptional case E = 0. It follows from (7.193) that

τ ≈ 2

q2B

1

t
, t→ 0 (7.248)

and for the volume, we obtain from (7.196)

V ∼ t2, t→ 0. (7.249)

With the help of Eq. (7.153), we conclude that the approximation of the scale factors is

given by

ai ≈ Āit
2/(D−1) exp

(
2αi

q2B

1

t

)
, t→ 0 (7.250)

in accordance with expression (7.180) for α(2) = 1.

Thus, the scale factors behave either anisotropically and exponentially like

ai ∼ exp

(
2αi

q2B

1

t

)
, t→ 0 (7.251)

if αi 6= 0 (ε > 0, A(1) < 0) or they have power law behaviour like

ai ∼ t2/(D−1), t→ 0 (7.252)

if αi = 0 (ε = 0, A(1) = 0) (see Eq. (7.181) for α(2) = 1). In the latter case, the free

minimally coupled scalar field is absent (A(1) = 0).

Similar investigations can be done for the equation (7.232) shifted in time such that

V ≈ t2, t→ 0.

If E < 0, the universe has in the Lorentzian region a classical turning point at the

minimal volume Vmin and reaches never V = 0 (see Fig. 7 and Fig. 8).
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Now, let us consider the infinite volume limit V → 0 which, as we shall see, coincides

with the limit t → +∞. As follows from Fig. 7 and Fig. 8, this is possible if B, C > 0

or B < 0, C > 0. With Eqs. (7.193) to (7.195) and (7.216), (7.218) to (7.220) one

can demonstrate that τ → constant if t → +∞ and the constant can be put equal to

zero (with a proper choice of the integration constant τ0). From (7.153) follows that

isotropization takes place in this limit, namely

ai ∼ V 1/D−1, t→ +∞ (7.253)

and from Eqs. (7.196) to (7.198) and (7.221), (7.223) to (7.225) we get

V ≈ exp
(√

2Cqt
)
, t→ +∞ (7.254)

in accordance with (7.169).

Thus, if C > 0 we obtain in the limit t → +∞ an (isotropic) de Sitter universe. If

C < 0, the universe has a classical turning point at maximal volume Vmax and the volume

can not go to infinity.

Let us come back once more to the case C > 0 describing a universe arising from

“nothing”. The volume is given by (7.201), (7.225), and (7.223) and the harmonic time

coordinate and the synchronous one are related via (7.200), (7.220), and (7.218), respec-

tively. We shall restrict ourselves to the case E < 0 for simplicity. In this case, we get

the asymptotic expression

τ ≈ 1√
|E|/2q

arctan

√
2|E|C√
|∆| −B

≡ A, (7.255)

if t �
(√

C
2
q
)−1

(it is sufficient to satisfy
√

C
2
qt ≥ 2). Then, as follows from equation

(7.153), the scale factors are given by

ai ≈ Ai exp(αiA)V 1/(D−1). (7.256)

In [122] was shown that for 4 <
∼

√
C
2
qt � D − 1 the parameters of the model can be

chosen such that, due to the exponential prefactor in (7.256), some of the factor spaces

(with αi > 0) undergo inflation after birth from “nothing” while other factor spaces (with

αi < 0) remain compactified near the Planck length LPl ≈ 10−33cm. The (graceful exit)

mechanism responsible for the transition from the inflationary stage to the Kasner-like

stage, in which the scale factors of the external spaces Mi exhibit power-law behaviour

while the internal spaces remain frozen in near the Planck scale, deserves still more detailed

investigations, similar those of [122]. (There the complementary case of multidimensional

cosmological models with cosmological constant was considered.)
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7.5.4 Classical wormholes

In this section we consider in more detail a special type of instantons, called wormholes.

These usually are Riemannian metrics, consisting of two large regions joined by a narrow

throat (handle). Obviously, they appear if the classical Lorentzian solutions of the model

have turning points at some maximum, Namely, according to Fig. 7 and 8, for models with

C < 0 (the parameter B may be positive as well as negative). Let us show this explicitly.

We consider instantons which can be obtained by analytic continuation t → −it of the

Lorentzian solutions (7.232), (7.233), (7.238) and (7.241) respectively.

V =
B

|C|
cosh2

(√
|C|/2qt

)
, E = 0, |t| <∞, (7.257)

V =
cosh2

(√
|C|/2qt

)
2|C|

[√
|∆|+B +

(√
|∆| −B

)
tanh2

(√
|C|/2qt

)]
, (7.258)

E > 0, |t| <∞,

V =
cosh2

(√
|C|/2qt

)
2|C|

[
B +

√
|∆| −

(
B −

√
|∆|
)

tanh2
(√

|C|/2qt
)]
, (7.259)

−B2/4|C| < E < 0, |t| <∞,

V =
cosh2

(√
|C|/2qt

)
2|C|

[√
|∆| − |B|+

(√
|∆|+ |B|

)
tanh2

(√
|C|/2qt

)]
,(7.260)

E > 0, |t| <∞.

As mentioned before, these equations correspond (with evident substitutions) to the

Lorentzian equations (7.221), (7.225), (7.223) and (7.201), respectively. The harmonic

and synchronous times are related respectively by

τ =

√
2|C|
Bq

tanh
(√

|C|/2qt
)
, E = 0, (7.261)

tan
(√

E/2qτ
)

=

√
4E|C|√
|∆|+B

tanh
(√

|C|/2qt
)
, E > 0, (7.262)

tanh
(√

|E|/2qτ
)

=

√
|∆| −B√
4EC

tanh
(√

|C|/2qt
)
, − B2

4|C|
< E < 0, (7.263)

tan
(√

E/2qτ
)

=

√
4E|C|√
|∆| − |B|

tanh
(√

|C|/2qt
)
, E > 0. (7.264)

(See (7.216), (7.220), (7.218) and (7.200) respectively. (7.218) looks like (7.263), if we

choose the constant of integration τ0 such that f |τ=0 = V
(2)
0 , whence f =

√
|∆| exp

(√
2Eqτ

)
,

and use the relation f = |B| −
√

4EC tanh

[√
C/2qt+ artanh

|B|−
√
|∆|

√
4EC

]
, where a turning

point appears for t = 0.)
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It can easily be seen from (7.261) to (7.264) that the harmonic time τ is finite for the

full range −∞ < t <∞ and goes to constants when |t| → +∞.

For the spatial volume of the universe we have the asymptotic behaviour

V ∼ exp
(√

2|C| q |t|
)
, |t| → ∞, (7.265)

for all cases (7.257) to (7.260).

In the Euclidean region (7.153) holds unchanged, since the Wick rotation τ → −iτ
has to be accompanied by the transformation αj → iαj (pj → ipj). This means that the

parameter ε in the constraint equation (7.149) remains unchanged (see (7.148)).

Thus, the Euclidean metric reads

ds2 = dt2 + a2
1(t)g

(1) + . . .+ a2
n(t)g(n), (7.266)

where each scale factor ai has its own turning point at ”time” ti, when d
dt
ai = 0. The

metric has its most simple and symmetric form in the case ε = 0 (αi = 0, i = 1, . . . , n),

whence

ds2 = dt2 + V
2

D−1

(
g(1) + . . .+ g(n)

)
, (7.267)

where V is given by equations (7.257) to (7.260), and the throat is located at t = 0. In

the limit |t| → ∞, the metric (7.266) converges to

ds2 = dt2 + exp

(
2
√

2|C|
D − 1

q |t|

)(
g(1) + . . .+ g(n)

)
, (7.268)

which describes an anti-de Sitter Euclidean universe. Thus, the metric (7.266) describes

asymptotically anti-de Sitter wormholes.

The structure of a universe for models with classical Euclidean wormholes is shown

schematically in Fig. 11 und Fig. 12 for the symmetric case αi = 0 (i = 1, . . . , n) with

a metric (7.267). There are two qualitatively different pictures. The first case (see Fig.

11) takes place for E ≥ 0 (B > 0, C < 0) and for E > 0 (B,C < 0) and describes

asymptotically an anti-de Sitter wormhole and a baby universe which can branch off from

this wormhole. The second case (see Fig. 12) takes place for −B2/4|C| < E < 0 (B > 0,

C < 0) and describes, besides wormhole and baby universe, an additional parent instan-

ton which is responsible for the birth of the universe from nothing.
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Figure 11: An asymptotically anti-de Sitter wormhole is shown schematically for energies

E ≥ 0 (B > 0, C < 0) and E ≥ 0 (B,C < 0) in the symmetrical case αi = 0 (i = 1, . . . , n).

Figure 12: The qualitative structure of the universe is is shown schematically for energies

−Um < E < 0 (B > 0, C < 0) in the symmetrical case αi = 0 (i = 1, . . . , n).
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7.5.5 Reconstruction of potentials

The effective perfect fluid Lagrangian (7.133) has its origin in the scalar field Lagrangian

(7.128). Below we calculate a class of potentials U (a)(ϕ(a)) which ensure the equivalence

of these Lagrangians. The procedure of potential reconstruction was proposed in [121]

and is applied in the following. For the integrable 3-component model holds

ϕ(a) = ±
√
α(a)/2

q

∫ √
ρ(a)(V )dV

[ε+ κ2V 2 (ρ(1) + ρ(2) + ρ(3))]
1/2

+ ϕ
(a)
0 , a = 1, 2, 3, (7.269)

where the energy density ρ(a) is given by (7.134) and α(1) = 2, α(2) = 1, α(3) = 0. ϕ
(a)
0

is a constant of integration. We should stress that equation (7.269) was obtained for

Lorentzian regions. As a result, we get the scalar fields ϕ(a) as a function of the spatial

volume V. Inverting this expression, we find the spatial volume as a function of the scalar

field ϕ(a), V = V (ϕ(a)), and consequently, a dependence of the energy density ρ(a) on

the scalar field ϕ(a), ρ(a) = ρ(a)(ϕ(a)). Then, using Eqs. (7.130) to (7.132), we find the

potential U (a)(ϕ(a)) in the form

U (a)(ϕ(a)) =
1

2

(
2− α(a)

)
ρ(a)(ϕ(a)), a = 1, 2, 3, (7.270)

where

ρ(a) = A(a)
[
V (ϕ(a))

]−α(a)

. (7.271)

The third component of the scalar field has α(3) = 0. Then, from (7.270) and (7.271) it

follows that ϕ(3), U (3), and ρ(3) are constant. This scalar field component with the equation

of state P (3) = −ρ(3) is equivalent to the cosmological constant Λ ≡ κ2U (3) = κ2A(3) = C.

For α(1) = 2, we have U (1) ≡ 0 (free scalar field). In this case, the scalar field ϕ(1) is

equivalent to a ultra-stiff perfect fluid (P (1) = ρ(1)). Equation (7.269) reads in this case

ϕ(1) − ϕ
(1)
0 = ±

√
A(1)

q

∫
dV

V
√
E +BV + CV 2

, (7.272)

where E and B are defined by (7.184) and (7.185) respectively.

A consequence of (7.186) is

ϕ(1) − ϕ
(1)
0 = ±

√
2A(1)τ. (7.273)

This result is expected for a free minimal coupled scalar field in the harmonic time gauge

where ϕ̈(1) = 0. After integration in (7.272),

ϕ(1) − ϕ
(1)
0 = ∓ i 2

√
|A(1)|
q

√
BV + CV 2

BV
, E = 0, (7.274)

ϕ(1) − ϕ
(1)
0 = ±

√
A(1)

√
Eq

ln
2E +BV − 2

√
ER

2V
, E > 0, (7.275)

ϕ(1) − ϕ
(1)
0 = ± i

√
|A(1)|√
|E|q

arcsin
BV − 2|E|
V
√
|∆|

, E < 0, B2 − 4EC > 0, (7.276)
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with R := E + BV + CV 2 and |∆| = B2 − 4EC. For E ≤ 0 (i.e. A(1) < 0) this scalar

field is imaginary.

Let us now consider the second component with α(2) = 1. The scalar field ϕ(2) is

equivalent to dust (P (2) = 0). Equation (7.269) reads now

ϕ(2) − ϕ
(2)
0 = ±

√
A(2)

√
2q

∫
dV√

V
√
E +BV + CV 2

. (7.277)

ϕ(2) is imaginary for A(2) < 0, i.e. B < 0. The integral in (7.277) is an elliptic one and,

in general, it is not possible to express it by elementary functions. But in the particular

case E = 0, which expresses the asymptotic behaviour of the scalar field (7.277), we get

ϕ(2) − ϕ
(2)
0 = ∓

√
2

κq
arcoth

(
1 +

C

B
V

)1/2

, B, C > 0, (7.278)

ϕ(2) − ϕ
(2)
0 = ∓

√
2

κq
artanh

(
1− |C|

B
V

)1/2

, B > 0, C < 0, (7.279)

ϕ(2) − ϕ
(2)
0 = ∓i

√
2

κq
arctan

(
C

|B|
V − 1

)1/2

, B < 0, C > 0, (7.280)

the volume of the universe

V =
B

C
sinh−2

[
κq√

2

(
ϕ(2) − ϕ

(2)
0

)]
, B, C > 0, (7.281)

V =
B

|C|
cosh−2

[
κq√

2

(
ϕ(2) − ϕ

(2)
0

)]
, B > 0, C < 0, (7.282)

V =
|B|
C

cos−2

[
κq√

2
i
(
ϕ(2) − ϕ

(2)
0

)]
, B < 0, C > 0, (7.283)

and the potential of the scalar field

U (2)(ϕ(2)) =
C

2κ2
sinh2

[
κq√

2

(
ϕ(2) − ϕ

(2)
0

)]
, B, C > 0, (7.284)

U (2)(ϕ(2)) =
|C|
2κ2

cosh2

[
κq√

2

(
ϕ(2) − ϕ

(2)
0

)]
, B > 0, C < 0, (7.285)

U (2)(ϕ(2)) =
C

2κ2
cos2

[
κq√

2
i
(
ϕ(2) − ϕ

(2)
0

)]
, B < 0, C > 0. (7.286)

It follows from these equations that for B,C > 0 and B,C < 0 the volume goes to infinity

like

V ∼ 1

|ϕ(2)|2
→ +∞,

∣∣ϕ(2)
∣∣→ 0. (7.287)

The general expression (7.277) should have the same asymptotic behaviour in all the cases

where the limit V → +∞ is permitted, because we can drop in this limit the term E in

the denominator of (7.277).

If E > 0, from (7.277) results

ϕ(2) − ϕ
(2)
0 ≈

√
2A(2)/E

q

√
V → 0, V → 0. (7.288)
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Let us now consider two particular cases of (7.277) for E 6= 0. The first case is that one

when the classical trajectory has two turning points V
(1,2)
0 , i. e. when either B > 0, C < 0

or B < 0, C > 0 ( for both the cases B2 > 4EC). Then (see equation (3.131) in [136]),

ϕ(2) = ± 2

κq

√
B√

|B|+
√
|∆|

F (ψ|m) (7.289)

where F (ψ|m) is the elliptic integral of the first kind [137] and

ψ = arcsin

√
(V

(2)
0 − V )/(V

(2)
0 − V

(1)
0 ), V

(2)
0 > V ≥ V

(1)
0 , B > 0, C < 0,(7.290)

ψ = arcsin

√
V/V

(1)
0 , V

(2)
0 > V

(1)
0 ≥ V, B < 0, C > 0,(7.291)

ψ = arcsin

√
(V − V

(2)
0 )/(V − V

(1)
0 ), V > V

(2)
0 > V

(1)
0 , B < 0, C > 0,(7.292)

m =

√
1− V

(1)
0 /V

(2)
0 , V

(2)
0 > V ≥ V

(1)
0 , B > 0, C < 0, (7.293)

m =

√
V

(1)
0 /V

(2)
0 , V

(2)
0 > V

(1)
0 ≥ V, B < 0, C > 0, (7.294)

m =

√
V

(1)
0 /V

(2)
0 , V > V

(2)
0 > V

(1)
0 , B < 0, C > 0. (7.295)

The turning points are

V
(1,2)
0 =

|B| ∓
√
|∆|

2|C|
. (7.296)

The minus sign is related to V
(1)
0 , the plus sign to V

(2)
0 , and |∆| = B2 − 4EC. The scalar

field ϕ(2) is imaginary for B < 0.

With the Jacobian elliptic functions [137], inverting (7.289), the volume of the universe

is given by

V = V
(2)
0 − sn2(V

(2)
0 − V

(1)
0 ), V

(2)
0 > V ≥ V0(1), B > 0, C < 0, (7.297)

V = sn2V
(1)
0 , V

(2)
0 > V

(1)
0 ≥ V, B < 0, C > 0, (7.298)

V =
V

(2)
0 − sn2V

(1)
0

1− sn2
, V > V

(2)
0 > V

(1)
0 , B < 0, C > 0, (7.299)

where sn ≡ sn
(
I1ϕ

(2)|m
)

= sinψ and I−1
1 = ± 2

√
B

κq
√
|B|+|∆|

. The corresponding potential

terms are then given as U (2) = A(2)/2V (see (7.270) and (7.271) for α(2) = 1). According

to the properties of the Jacobian elliptic functions [137] asymptotic estimates for (7.298)

and (7.299) are V ≈ (q2E/2A(2))(ϕ(2))2 for |ϕ(2)| → 0 (in accordance with (7.288)) and

V ∼ 1/|ϕ(2)|2 for |ϕ(2)| → 0 (in accordance with (7.287)).

Another particular case for C > 0 is that with E > B2/4C. Here (see (3.138 (7)) in

[136]), we obtain

ϕ(2) = ±
√
B/2C

κq

1

(E/C)1/4
F (ψ|m), (7.300)

where

ψ = 2 arctan

√
V/
√
E/C (7.301)
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and

m =

√
(2
√
EC −B)/4

√
EC. (7.302)

Inverting equation (7.300), we obtain

V =
2− sn2

sn2

√
E/C ±

√(
2− sn2

sn2

√
E/C

)2

− E

C
(7.303)

with sn ≡ sn(I2ϕ
(2)|m) = sinψ and I−1

2 = ±
√

B/2C

κq(E/C)1/4 . For the branch with the plus sign,

V ∼ 1
|ϕ(2)|2 → ∞ for |ϕ(2)| → 0 (in accordance with (7.287)) and for the branch with the

minus sign, V ≈ (q2E/2A(2))(ϕ(2))2 → 0 for |ϕ(2)| → 0 (in accordance with (7.288)). To

find the scalar field potential, we have to substitute (7.303) into U (2)(ϕ(2)) = A(2)/2V .

7.5.6 Solutions to the quantized model

At the quantum level, the constraint equation (7.145) is replaced by the Wheeler-DeWitt

(WDW) equation. The WDW equation is covariant with respect to gauge as well as

minisuperspace coordinate transformations [38]. In the harmonic time gauge [118], [38] it

reads (
1

2

∂2

∂z02 −
1

2

n−1∑
i=1

∂2

∂zi2
+ κ2

m∑
a=1

A(a) exp(k(a)qz0)

)
Ψ = 0. (7.304)

Formally, this WDW equation has the same structure as that one in [124]. So, we can

take over some results of [124]. However, on the semiclassical level the dynamics of the

universe is quite different for the models in both the papers. Semiclassical equations were

considered in [91].

We look for solutions of (7.304) by separation of the variables and try the ansatz

Ψ(z) = Φ(z0) exp (ip · z) , (7.305)

where p := (p1, . . . , pn−1) is a constant vector, z := (z1, . . . , zn−1), pi = pi and p · z :=∑n−1
i=1 piz

i. Substitution of (7.305) into (7.304) gives[
1

2

d2

dz02 +
1

2

n−1∑
i=1

(pi)
2 + κ2

m∑
a=1

A(a) exp
(
k(a)qz0

)]
Φ = 0. (7.306)

For the integrable 3-component model this equation reduces to[
−1

2

d2

dz02 + U(z0)

]
Φ = EΦ (7.307)
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in the notation of (7.184) and (7.185). Following [124], we rewrite this equation like

x2d
2Φ

dx2
+ x

dΦ

dx
+
[
Ẽ + B̃x+ C̃x2

]
Φ = 0, (7.308)

where Ẽ = 2E/q2, B̃ = 2B/q2, C̃ = 2C/q2, and x = exp(qz0) (x is identical to the spatial

volume of the universe V). (7.308) is equivalent to the Whittaker equation

d2y

dξ2
+

[
−1

4
+
B̃/T

ξ
+
Ẽ + 1/4

ξ2

]
y = 0, (7.309)

where T := ±2i
√
C̃, ξ := Tx, and Φ =: x−1/2y(ξ) and also equivalent to the Kummer

equation

ξ
d2w

dξ2
+ (1 + 2µ− ξ)

dw

dξ
−

[
1

2
+ µ− B̃

T

]
w = 0, (7.310)

where µ2 := −Ẽ and Φ =: x−1/2 exp
(
−1

2
ξ
)
ξ

1
2
+µw(ξ). In the first case, the solutions are

the Wittaker functions [137] y1 := Mk,µ(ξ) and y2 := Wk,µ(ξ) with k := B̃/T and µ2 :=

−Ẽ. In the second case, the solutions are the Kummer functions [137] w1 := M(a, b, ξ)

and w2 := U(a, b, ξ) with a := 1
2

+ µ− B̃/T and b := 1 + 2µ.

The general solution of equation (7.304) for the 3-component model is

Ψ(z) =
∑
i=1,2

∫
dn−1pCi(p) exp (ip · z) Φ

(i)
E (exp(qz0)), (7.311)

where Φ
(1,2)
E = 1√

x
y1,2(ξ), or Φ

(1,2)
E = 1√

x
exp

(
−1

2
ξ
)
ξ

1
2
+µw1,2(ξ). It is convenient to set

T = +2i
√
C̃ for C > 0 and T = −2i

√
C̃ for C < 0, and µ := +

√
−Ẽ.

In [91], it was argued that the parameter E can be interpreted as energy. So, the state

with E = 0, vanishing momenta pi (i = 1, . . . , n− 1), and A(1) = 0 (absence of free scalar

field excitations) is the ground state of the system. Thus, its wave function reads

Ψ0 = Φ
(i)
0

(
exp(qz0)

)
, i = 1, 2. (7.312)

The limit of large spatial geometries in (7.308) z0 → +∞ (remember x ≡ V = exp(qz0))

is equivalent to B̃ → 0. In this limit, the Wittaker functions reduce to Bessel functions

[137], namely

Mk,µ(ξ)−→
k→0

√
V Jµ

(√
C̃V
)
, (7.313)

Wk,µ(ξ)−→
k→0

√
V H(2)

µ

(√
C̃V
)

(7.314)

for C > 0 and

Mk,µ(ξ)−→
k→0

√
V Iµ

(√
|C̃|V

)
, (7.315)

Wk,µ(ξ)−→
k→0

√
V Kµ

(√
|C̃|V

)
(7.316)

for C < 0.
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Following the ideas of [91, 138], one can demonstrate that for C > 0 the wave function

ΨHH
0 = Φ

(1)
0 −→

k→0
J0

(√
2C

q
V

)
∼

V→∞
cos

(√
2C

q
V

)
(7.317)

corresponds to the Hartle-Hawking boundary condition [139] and the wave function

ΨV
0 = Φ

(2)
0 −→

k→0
H

(2)
0

(√
2C

q
V

)
∼

V→∞
exp

(
−i
√

2C

q
V

)
(7.318)

corresponds to the Vilenkin boundary condition [140].

In the case C < 0, we get

ΨHH
0 = Φ

(1)
0 −→

k→0
I0

(√
2|C|
q

V

)
∼

V→∞
exp

(√
2|C|
q

V

)
(7.319)

The potential has for B > 0, C < 0 as well and for E < 0 the energy spectrum is discrete

(see Fig. 8). In this case, the finite solutions of the wave equation (7.307) [141] are

Φn = exp

(
−1

2
ξ

)
ξµM(−n, b, ξ). (7.320)

The energy levels are given by

−En =

[
B

2
√
|C|

− q√
2

(
n+

1

2

)]2

. (7.321)

n is a non negative integer and restricted to

n <
B

q
√

2|C|
− 1

2
. (7.322)

Thus, the discrete spectrum has a finite number of eigenvalues. If B

q
√

2|C|
< 1

2
, there is no

discrete spectrum. It was demonstrated in [124] that the wave functions (7.320) satisfy

the quantum wormhole boundary conditions [142].

7.6 The Einstein frame in cosmology

In this section we discuss the issue of the physical frame for the particularly important

case D0 = 4. First of all, in this case a self-dual canonical formulation of dynamics is at

hand, due to the particular spinor decomposition so(1, 3) = su(2)⊕ su(2) of the tangent

Lorentz symmetry. In the Einstein frame, the effective σ-model with D0 = 4 admits in

principle a canonical quantization of the geometry on M0 = IR×M0 to the same extend

and under the same assumptions as pure Einstein gravity does.

Since for a multidimensional geometry as defined above the imprint of the internal

factor spaces is only by their scale factors, configuration space and phase space of such

geometries will only be extended by a finite number of dilatonic midisuperspace fields.
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However, only in the Einstein frame the coupling of the dilatonic fields to the D0-geometry

will be minimal such that the quantization of the latter can be executed practically inde-

pendently.

In the following we denote the external space-time metric g(0) in the Brans-Dicke frame

with γ
!
= 0 as g(BD) and in the Einstein frame with f

!
= 0 as g(E). It can be easily seen

that they are connected with each other by a conformal transformation

g(E) 7→ g(BD) = Ω2g(E) (7.323)

with Ω from (6.39).

In particular, also for spatially homogeneous cosmological models (and with t ↔ u

for spherically symmetric static models) solutions have to be transformed to the Einstein

frame before a physical interpretation can be given.

7.6.1 Generating solutions in the Einstein frame

Let us now consider the space time foliation M0 = IR × M0 where g(0) is a smooth

homogeneous metric on M0. Under any projection pr0 : M0 → IR a consistent pullback of

the metric −e2γ(τ)dτ ⊗ dτ from τ ∈ IR to x ∈ pr−1
0 {τ} ⊂M0 is given by

g(BD)(x) := −e2γ(τ)dτ ⊗ dτ + e2β0(x)g(0). (7.324)

For spatially (metrically-)homogeneous cosmological models as considered below all scale

factors ai := eβi
, i = 0, . . . , n, depend only on τ ∈ IR.

With (7.324) and (7.323), the multidimensional metric reads

g = −e2γ(τ)dτ ⊗ dτ + a2
0g

(0) +
n∑

i=1

e2βi

g(i)

= −dtBD ⊗ dtBD + a2
BDg

(0) +
n∑

i=1

e2βi

g(i)

= −Ω2dtE ⊗ dtE + Ω2a2
Eg

(0) +
n∑

i=1

e2βi

g(i), (7.325)

where a0 := aBD and aE are the external space scale factor functions depending respec-

tively on the cosmic synchronous time tBD and tE in the Brans-Dicke and the Einstein

frame. With (6.39) the latter is related to the former by

aE = Ω−1aBD =

(
n∏

i=1

ediβ
i

) 1
D0−2

aBD, (7.326)

and the cosmic time of the Einstein frame is given by

±dtE = Ω−1eγdτ =

(
n∏

i=1

ediβ
i

) 1
D0−2

dtBD . (7.327)

Since a2
BD(dηBD)2 = Ω2a2

E(dηE)2, the conformal times of the Einstein and the Brans-Dicke

frame agree (up to time reversal). This has sometimes guided authors to compare the
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frames in conformal time (see e.g. [143]). However (at least for cosmology) the physical

relevant time is the cosmic synchronous time, which is different for different frames. The

presently best known (spatially homogeneous) cosmological solutions were found in the

Brans-Dicke frame (see e.g. [144, 119, 124, 30] and an extensive list of references there).

Most of them are described most simply within one of the following two systems of target

space coordinates. We set

q :=

√
D − 1

D − 2
, p :=

√
d0 − 1

d0

. (7.328)

With Σk =
∑n

i=k di, the first coordinate system [118] is related to βi, i = 0, . . . , n, as

z0 := q−1

n∑
j=0

djβ
j ,

zi := [di−1/ Σi−1Σi]
1/2

n∑
j=i

dj

(
βj − βi−1

)
, i = 1, . . . , n , (7.329)

and the second one [138] as

v0 := p−1(
n∑

j=0

djβ
j − β0) ,

v1 := p−1[(D − 2)/d0Σ1]
1/2

n∑
j=1

djβ
j,

vi := [di−1/ Σi−1Σi]
1/2

n∑
j=i

dj

(
βj − βi−1

)
, i = 2, . . . , n , (7.330)

In both of this minisuperspace coordinates the target space Minkowski metric G is given

in form of the standard diagonal matrix Gij := (−)δ0iδij. The two coordinates are related

by a Lorentz boost in the (01)-plane.

In coordinates (7.329) some known solutions (see e.g. [30, 91, 121]) take the form

ai = Ai(e
qz0

)
1

D−1 eαiτ , i = 0, . . . , n, (7.331)

where parameters αi satisfy conditions

n∑
i=0

diα
i = 0, (7.332)

n∑
i=0

di(α
i)2 = 2ε

and ε is a non-negative parameter.

In coordinates (7.330) some known solutions (see e.g. [124, 145]) take the form

a0 = A0(e
pv0

)
1

d0−1 eα0τ , (7.333)

ai = Aie
αiτ , i = 1, . . . , n,
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where parameters αi satisfy conditions
n∑

i=0

diα
i = α0, (7.334)

n∑
i=0

di(α
i)2 = (α0)2 + 2ε

and ε is a non-negative parameter.

Explicit expressions for functions z0 ≡ z0(τ) and v0 ≡ v0(τ) depend on the details of

the particular models.

Solutions of the form (7.331) and (7.333) were found in the harmonic time gauge

γ
!
=
∑n

j=0 djβ
j, where τ is the harmonic time of the Brans-Dicke frame. Equation (7.329)

shows that the coordinate z0 is related to the dynamical part of the total spatial volume

in the BD frame: v := eqz0
=
∏n

i=0 ai
di .

Relations (7.326) and (7.330) between the different minisuperspace coordinates imply

that

(d0 − 1)β0
E = (d0 − 1)β0 +

n∑
j=1

djβ
j = pv0 , (7.335)

which shows that the coordinate v0 is proportional to the logarithmic scale factor of

external space in the Einstein frame: aE := eβ0
E .

Thus target space coordinates z have the most natural interpretation in the Brans-

Dicke frame, whereas target space coordinates v are better adapted to the Einstein frame.

Via (7.335) synchronous time in the Einstein frame is related to harmonic time τ in

the Brans-Dicke frame by integration of (7.327) with integration constant c to

|tE|+ c =

∫ (
epv0
)d0/d0−1

dτ =

∫
ad0

E dτ . (7.336)

Thus the corresponding metric of external space-time reads

g(E) = −a2d0
E dτ ⊗ dτ + a2

Eg
(0), (7.337)

where for solutions (7.331)

aE =

[
(eqz0

)
1

q2

A0eα0τ

] 1
d0−1

, (7.338)

and for solutions (7.333)

aE =
(
epv0
) 1

d0−1
. (7.339)

Expressions for the internal scale factors are not affected. In Eqs. (7.337) to (7.339)

the time τ is the harmonic one from the Brans-Dicke frame. The transformation to

synchronous time in the Einstein frame is provided by Eq. (7.336). Once z0 or v0 is known

as a function of τ , explicit expressions can be given. However these functions depends on

the concrete form of the cosmological model (see [144],[119],[30],[138], [91],[121],[145]).

Above we obtained a general prescription for the generation of solutions in the Einstein

frame from already known ones in the Brans-Dicke frame. It can easily be seen that the

behavior of the solutions in both of these frames is quite different. Let us demonstrate

this explicitly by the example of a generalized Kasner solution.
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7.6.2 Solutions in original form

Let t := tBD be the synchronous time of the Brans-Dicke frame, and ẋ denote the derivative

of x with respect to t.

The well-known Kasner solution [111] describes a 4-dimensional anisotropic space-time

with the metric

g = −dt⊗ dt+
3∑

i=1

t2pidxi ⊗ dxi (7.340)

where the pi are constants satisfying

3∑
i=1

pi =
3∑

i=1

(pi)
2 = 1. (7.341)

It is clear that a multidimensional generalization of this solution is possible for a manifold

with Ricci flat factor spaces (Mi, gi), i = 0, . . . , n. Particular solutions generalizing (7.340)

with (7.341) were obtained in many papers [87],[146]-[150]. More general solutions for an

arbitrary number of di-dimensional tori were found in [89] and generalized to the case of

a free minimally coupled scalar field Φ in [83]. In the latter case there are two classes of

solutions.

A first class represents namely Kasner-like solutions. None of these is contained in the

hypersurface
n∑

i=0

diβ̇
i = 0 (7.342)

of constant spatial volume. With c and a(0)i, i = 0, . . . , n integration constants, in the

Brans-Dicke synchronous time gauge such a solution reads

ai = a(0)it
αi

, i = 0, . . . , n, (7.343)

Φ = ln tα
n+1

+ c, (7.344)

where the αi fulfill the conditions

n∑
i=0

diα
i = 1, (7.345)

n∑
i=0

di(α
i)

2
= 1− (αn+1)2.

Without an additional non-trivial scalar field Φ, i.e. for αn+1 = 0, these conditions become

analogous to (7.341)
n∑

i=0

diα
i =

n∑
i=0

di(α
i)

2
= 1. (7.346)

Solution (7.343) describes a universe with increasing total spatial volume

v ∼
n∏

i=0

ai
di ∼ t (7.347)

106



and decreasing Hubble parameter for each factor space

hi :=
1

ai

dai

dt
=
αi

t
, i = 0, . . . , n. (7.348)

In the case of imaginary scalar field ((αn+1)2 < 0) factor spaces with αi > 1 undergo a

power law inflation. The absence of a non-trivial scalar field, i.e. Φ ≡ 0, implies (except

for d0 = α0 = 1, αi = 0, i = 1, . . . , n) that |αi| < 1 for i = 0, . . . , n. In [151] it was shown

that after a transformation t → t0 − t (reversing the arrow of time) factor spaces with

αi < 0 can be interpreted as inflationary universes with scale factors ai ∼ (t0 − t)αi
with

αi < 0 growing at an accelerated rate äi/ai > 0.

A second (more special) class of solutions is confined to the hyperplane (7.342) in

momentum space. In this case (in the Brans-Dicke frame) harmonic and synchronous

time coordinates coincide and solutions read

ai = a(0)ie
bit, i = 0, . . . , n, (7.349)

Φ = bn+1t+ c, (7.350)

where c is a integration constant and the constants bi satisfy

n∑
i=0

dib
i = 0, (7.351)

n∑
i=0

di(b
i)

2
+ (bn+1)2 = 0.

The latter relation shows that these solutions are only possible if Φ is an imaginary scalar

field with (bn+1)2 < 0. For the sake of generality, such exact solutions for MCM are

discussed here too for both frames, although as mentioned above in the Introduction they

are unstable for classical theory. The main difference between dilatonic fields and Φ is that

the dilatonic scalar fields of the MCM have a pure geometrical nature while Φ was from

the very beginning just added by hand in the usual manner without any assumption on

being real or imaginary. Therefore these exact solutions could be considered as unphysical

from the point of classical stability.

The inflationary solution (7.349) describes a universe with constant total spatial vol-

ume

v ∼
n∏

i=0

ai
di =

n∏
i=0

adi

(0)i , (7.352)

and a nonzero but constant Hubble parameter

hi =
1

ai

dai

dt
= bi , i = 0, . . . , n , (7.353)

for each factor space. This is a particular case of a steady state universe where stationarity

of matter energy density in the whole universe is maintained due to redistribution of

matter between contracting and expanding parts (factor spaces) of the universe (matter

density in the whole universe is constant due to the constant volume). This is unlike
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the original steady-state theory [82], where a continuous creation of matter is required

in order to stabilize matter density, which then necessitates a deviation from Einstein

theory. In [32] the inflationary solution was generalized for the case of a σ-model with

k-dimensional target vectors Φ rather than a single scalar field.

7.6.3 Solutions in the Einstein frame

In [25] several reasons have been listed why minimal coupling between geometry and

matter and hence the Einstein frame is the preferred choice. There also a general pre-

scription for the transformation of well known solutions from the Brans-Dicke frame to

the Einstein frame has been given. It was demonstrated explicitly that qualitative cos-

mological features change significantly under this transformation. This was shown for a

couple of examples, including the general multidimensional Kasner solution and a spe-

cial inflationary solution with constant internal volume. In particular it was shown that

inflationary solutions in the Brans-Dicke frame transform into non-inflationary ones in

the Einstein frame. It is to be expected that this is a rather general feature, whence the

multitude of solutions which appear inflationary in the Brans-Dicke frame will be indeed

non-inflationary when considered in the Einstein frame.

Let us now transform the solutions (7.343) to (7.344) and (7.349) to (7.350) above to

the Einstein frame.

We first consider the Kasner-like solution (7.343), where (6.39) determines the confor-

mal factor as

Ω−1 =

(
n∏

i=1

ediβ
i

) 1
D0−2

= C1t
(1−d0α0)/(d0−1) (7.354)

with

C1 :=

(
n∏

i=1

a di

(0)i

) 1
D0−2

. (7.355)

As it was noted above, the conformal transformation to the Einstein frame does not exist

for D0 = 2 (d0 = 1). In the special case of α0 = 1
d0

the conformal factor Ω is constant,

and both frames represent the same connection, hence the same geometry. 1 Even in this

case, (7.355) is still divergent for d0 = 1.

The external space scale factor in the Einstein frame is defined by formula (7.326)

which for (7.354) reads

aE = Ω−1aBD = a0t
(1−α0)/(d0−1), (7.356)

where a0 := C1a(0)0. At α0 = 1
d0

the (external space) scale factor aE = a0t
α0 ∼ aBD has

the same behavior in both frames which is just what one expects for constant Ω. The

metric of the external space-time then reads

g(E) = −Ω−2dt⊗ dt+ a2
Eg

(0) = −dtE ⊗ dtE + a2
Eg

(0), (7.357)

1Here is meant the geometry as given by the connection. Locally at x ∈ M0 this is just the End(TxM0)-
valued Riemannian curvature 2-form.
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where t is given synchronous time in the Brans-Dicke frame connected with synchronous

time in the Einstein frame via (7.327). Putting the integration constant to zero we obtain

t = C2t
(d0−1)/d0(1−α0)
E , (7.358)

where C2 =
[
C−1

1
1−α0

d0−1
d0

](d0−1)/d0(1−α0)

. The value α0 = 1 is a singular one. It can be seen

from (7.345) that |αi| < 1, i = 0, . . . , n+ 1 when the scalar field is real. The value α0 = 1

may appear only in the case of an imaginary scalar field. (7.356) shows that, in this case

aE is a constant. In the case α0 6= 1 the generalized Kasner-like solutions in the Einstein

frame take the form

ai,E = ãitE
α̃i

, i = 0, . . . , n, (7.359)

Φ = α̃n+1 ln tE + c. (7.360)

Here and in the following a0,E := aE(tE), ai,E := ai(tE), i = 1, . . . , n, are given as functions

of tE, while ãi, i = 0, . . . , n, and c are constants. In (7.359) and (7.360) the powers α̃i are

defined as

α̃0 :=
1

d0

(7.361)

α̃i :=
d0 − 1

d0(1− α0)
αi, i = 1, . . . , n+ 1,

with αi, i = 0, . . . , n+1, satisfying relations (7.345). Hence in contrast to (7.343) there is

no freedom in the choice of the power α̃0. For example at d0 = 3 one obtains an external

space scale factor aE = tE
1/3, i.e. the external space (M0, g0) behaves like a Friedmann

universe filled with ultra stiff matter (which is equivalent to a minimally coupled scalar

field).

Let us emphasize here once more that in the present approach the physical theory is

modeled as a D0-dimensional effective action with the space-time metric (7.357) in the

Einstein frame (f = 0). All internal spaces are displayed in the external space-time as

scalar fields, leading to a D0-dimensional self-gravitating σ-model with self-interaction.

Let us transform now the inflationary solution (7.349) to the Einstein frame. For this

solution the conformal factor and the external space scale factor read

Ω−1 = C1 exp

(
− d0b

0

d0 − 1
t

)
, (7.362)

aE = a0 exp

(
− b0

d0 − 1
t

)
, (7.363)

where C1 is defined by (7.355) and a0 = C1a(0)0. Note that the conformal transformation

(7.362) breaks down for D0 = 2 (d0 = 1). This happens even in the special case of b0 = 0.

For the latter, Ω is constant, whence the connection and its geometry represented by both

frames are the same. Here, the external space is static in both of them.

For b0 6= 0, synchronous times in the Brans-Dicke and Einstein frames are related by

t =
d0 − 1

d0b0
ln(C2tE

−1), (7.364)
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where (taking a relative minus sign in (7.327)) C2 = C1
d0−1
d0b0

. Thus in the Einstein frame

scale factors have power-law behavior

ai,E = ãitE
α̃i

, i = 0, . . . , n, (7.365)

with

α̃(0) :=
1

d0

(7.366)

α̃(i) := −d0 − 1

d0

bi

b0
i = 1, . . . , n.

Similar as for the Kasner-like solution, the inflationary solution transformed to the Ein-

stein frame has no freedom in choice of the power α̃(0). The external space scale factor

behaves as a0,E ∼ t
1/d0

E (compare also (7.359) and (7.361)). The scalar field reads

Φ = α̃n+1 ln tE + c, α̃n+1 := −d0 − 1

d0

bn+1

b0
. (7.367)

Using (7.351) we obtain the sum rules

n∑
i=0

diα̃
i = d0, (7.368)

(α̃n+1)2 = 2− d0 −
n∑

i=0

di(α̃
i)2 < 0,

whence the scalar field is imaginary.

The main lesson we learned in this section is the following: The dynamical behavior of

scale factors and scalar fields strongly depends on the choice of the frame. For example in

the case of solutions originating from the Kasner and inflationary solutions the external

space scale factor in the Einstein frame behaves as t
1/d0

E (except for the cases α0 = 1 and

b0 = 0 where aE is a constant). In this case there is no inflation of the external space,

neither exponential nor power law (with power larger than 1). However, an inversion of

time tE → t0− tE yields a solution aE ∼ (t0− tE)1/d0 . Since both ä, ȧ→ −∞ this solution

undergoes deflation, whence the flatness and horizon problems are solvable on the stage

of external space contraction [143].

7.7 Multidimensional m-component cosmology

In this section let Ni := dimMi for i = 1, . . . , n denote the dimension of the factor space

Mi from the multidimensional manifold (7.117), and its corresponding scale factor here

be labeled by xi.

The action of the cosmological models considered here is

S =
1

2κ2

∫
M

dDx
√
|g|R[g] + S∂M + Spf , (7.369)

where S∂M is a boundary term (just cancelling the boundary contribution of the Einstein

action after dimensional reduction) and Spf is the action of a multicomponent perfect
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fluid as a matter source. Multicomponent systems are often employed in 4-dimensional

cosmology, and in many cases they are adequate types of matter for descibing some early

epochs in the history of the universe [105]. In comoving coordinates the energy-momentum

tensor of such a source reads

TM
N =

m∑
s=1

T
M(s)
N , (7.370)

(T
M(s)
N ) = diag

−ρ(s)(t), p
(s)
1 (t), . . . , p

(s)
1 (t)︸ ︷︷ ︸

N1times

, . . . , p(s)
n (t), . . . , p(s)

n (t)︸ ︷︷ ︸
Nntimes

 , (7.371)

Furthermore, we suppose that the barotropic equation of state for the perfect fluid com-

ponents is given by

p
(s)
i (t) =

(
1− h

(s)
i

)
ρ(s)(t), s = 1, . . . ,m, (7.372)

with constants h
(s)
i . Here pressures and matter constants may be different in different

factor spaces.

The equation of motion 5MT
M(s)
0 = 0 for the perfect fluid component described by

the tensor (7.371) reads

ρ̇(s) +
n∑

i=1

Niẋ
i
(
ρ(s) + p

(s)
i

)
= 0. (7.373)

Using the equations of state (7.372), via (7.373) integrals of motion may be obtained in

form of constants

A(s) := ρ(s) exp

[
2γ0 −

n∑
i=1

Nih
(s)
i xi

]
, s = 1, . . . ,m, (7.374)

In dimension D (with gravitational constant κ2), the set of Einstein equations RM
N −

RδM
N /2 = κ2TM

N can be written as RM
N = κ2[TM

N − TδM
N /(D − 2)]. Furthermore, like the

multidimensional geometry itself, these equations decomposes blockwise to R0
0 − R/2 =

κ2T 0
0 and Rmi

ni
= κ2[Tmi

ni
− Tδmi

ni
/(D − 2)]. Using (7.119)-(7.372), we obtain

1

2

n∑
i,j=1

Gijẋ
iẋj + V = 0, (7.375)

ẍi + ẋi(γ̇0 − γ̇) = −κ2

m∑
s=1

A(s)

(
h

(s)
i −

∑n
k=1Nkh

(s)
k

D − 2

)

× exp

[
n∑

i=1

Nih
(s)
i xi − 2(γ − γ0)

]
. (7.376)

Here,

Gij = Niδij −NiNj (7.377)
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are the components of the minisuperspace metric,

V = κ2

m∑
s=1

A(s) exp

[
n∑

i=1

Nih
(s)
i xi − 2(γ − γ0)

]
. (7.378)

(7.374) is used to replace the densities ρ(s) in (7.375), (7.376) by expressions of the func-

tions xi(t).

After the gauge fixing γ = F (x1, . . . , xn) the equations of motion (7.376) are the

Euler-Lagrange equations obtained from the Lagrangian

L = eγ0−γ

(
1

2

n∑
i,j=1

Gijẋ
iẋj − V

)
(7.379)

and the zero-energy constraint (7.375) .

In order to be able to discuss the question of the physical (conformal) frame [26, 25]

we perform also the dimensional reduction to a 1 + N1-dimensional system. After this

reduction the action (7.369) reads

S =
1

2κ2
0

∫
M0

dN1+1x
√
|g(0)|

n∏
i=2

eNix
i(t)

×

{
R[g(0)]−

n∑
i,j=2

Gijẋ
iẋj

}
+ Spf , (7.380)

where

M0 := R×M1, g(0) := −e2γ(t)dt⊗ dt+ e2x1(t)g(1), (7.381)

κ−2
0 := κ−2

n∏
i=2

∫
Mi

dNix
√
|g(i)|. (7.382)

Thus the reduced action directly invokes a Brans-Dicke like conformal frame, given by

the metric g(0) on the extrinsic space-time manifold M0.

As the physically relevant case, we will assume now N1 = 3 (as for M1 := M3
1 in

the example below). Then the non-minimal coupling between the 4-dimensional metric

fundamental tensor in the Brans-Dicke frame (4)g(BD) := g(0) and the scalar fields xi,

i = 2, . . . , n, can then be reinterpreted as a non-constant Newton factor G, while the

metric (7.118) reads

g =(4) g(BD) +
n∑

i=2

e2xi(t)g(i). (7.383)

A conformal transformation with a factor

Ω−2 =
n∏

i=2

eNix
i

(7.384)

then yields the 4-dimensional metric fundamental tensor (4)g(E) of the Einstein frame,

(4)g(E) = 4g(BD)Ω−2 . (7.385)
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Below we will apply the transformation to the Einstein frame in a concrete example.

Now we introduce an n-dimensional real vector space Rn. By e1, . . . en we denote the

canonical basis in Rn (e1 = (1, 0, . . . , 0) etc.). Hereafter we use the following vectors:

1. the vector x with components being the solution of the equations of motion

x = x1(t)e1 + . . .+ xn(t)en, (7.386)

2. m vectors us, each of them for one component of the perfect fluid

us =
n∑

i=1

(
h

(s)
i −

∑n
k=1Nkh

(s)
k

D − 2

)
ei. (7.387)

Let < ., . > be a symmetrical bilinear form defined on Rn such that

< ei, ej >= Gij. (7.388)

The form is nondegenerate and the inverse matrix to (Gij) has the components

Gij =
δij

Ni

+
1

2−D
. (7.389)

The form< ., . > endows the space Rn with a metric, the signature of which is (−,+, ...,+)

[152], [118]. Gij is used to introduce the covariant components of vectors us

u
(s)
i =

n∑
i=1

Giju
j
(s) = Nih

(s)
i . (7.390)

For them the bilinear form reads

< us, ur >=
n∑

i=1

h
(s)
i h

(r)
i Ni +

1

2−D

[
n∑

i=1

h
(s)
i Ni

][
n∑

j=1

h
(r)
j Nj

]
. (7.391)

A vector y ∈ Rn is called time-like, space-like or isotropic, if < y, y > is smaller,

greater than or equal to zero, correspondingly. The vectors y and z are called orthogonal

if < y, z >= 0.

Using the notation < ., . > and the vectors (7.386)-(7.387), we may write the zero-

energy constraint (7.375) and the Lagrangian (7.379) in the form

E =
1

2
< ẋ, ẋ > +κ2e2(γ−γ0)

m∑
s=1

A(s)e<us,x> = 0, (7.392)

L =
1

2
eγ0−γ < ẋ, ẋ > −κ2eγ−γ0

m∑
s=1

A(s)e<us,x>. (7.393)

Here we take the harmonic time gauge, whence

γ(t) = γ0 =
n∑

i=1

Nix
i. (7.394)
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From the mathematical point of view the problem consist in solving the dynamical

system, described by a Lagrangian of the general form

L =
1

2
< ẋ, ẋ > −

m∑
s=1

a(s)e<us,x>, (7.395)

where x, us ∈ Rn. It should be noted that the kinetic term < ẋ, ẋ > is not a positively

definite bilinear form as it is usually the case in classical mechanics. Due to the pseudo-

Euclidean signature (−,+, ...,+) of the form < ., . > such systems may be called pseudo-

Euclidean Toda-like systems as the potential given in (6.11) defines a well known in

classical mechanics Toda lattices [90], [153].

Note that, we have to integrate the equations of motion following from the Lagrangian

(7.395) under the zero-energy constraint. Although an additional constant term −a(0)

(with u0 ≡ 0 ∈ Rn) in the Lagrangian (7.395) does not change the equations of motion,

it nevertheless shifts the energy constraint from zero to

E ≡ 1

2
< ẋ, ẋ > +

m∑
s=1

a(s) exp[< us, x >] = −a(0) ≡ −κ2A(0). (7.396)

In our cosmological model, with (7.372) and (7.387), such a term corresponds to a perfect

fluid with h
(0)
i = 0 for all i = 1, . . . , n. This is in fact just a Zeldovich (stiff) matter

component, which can also be interpreted as a minimally coupled real scalar field. Taking

into account the possible presence of Zeldovich matter, we have now to integrate the

equations of motion for an arbitrary energy level E.

7.7.1 Am Toda chain solution

We start from the Lagrangian (7.395) and the energy constraint (7.396) with

n ≥ m+ 1 , m ≥ 2 . (7.397)

Vectors us are required to obey the relations

< us, us > = u2 > 0 , s = 1, . . . ,m , (7.398)

< ur, ur+1 > = −1

2
u2 , , r = 1, . . . ,m− 1 , (7.399)

all the remaining < ur, us > = 0 , (7.400)

where u is an arbitrary non-zero real number. The relations (7.398)-(7.400) impose some

restrictions on the constants h
(s)
i in the barotropic equations of state (7.372), depending

on the number n ≥ 2 of factor spaces Mi and their dimensions Ni. Using (7.391), the

restrictions from (7.398)-(7.400) may be evaluated explicitely.

In this case the vectors us are space-like, linearly independent, and can be interpreted

as root vectors of the Lie algebra Am = sl(m+ 1,C). The Cartan matrix (Krs) (see e.g.
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[154, 155]) then reads

(Krs) =

(
2 < ur, us >

< ur, ur >

)
=



2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 2 −1

0 0 0 . . . −1 2


. (7.401)

Now, we choose in Rn a basis {f1, . . . , fn} with the following properties

fs+1 =
2us

< us, us >
, s = 1, . . . ,m , (7.402)

< f1, fi > = η1i , i = 1, . . . , n , (7.403)

< fs+1, fk > = 0 , < fk, fl >= ηkl , s = 1, . . . ,m; k, l = m+ 2, . . . , n(7.404)

with

(ηij) = diag(−1,+1, . . . ,+1) , i, j = 1, . . . , n . (7.405)

This basis contains, besides vectors proportional to us, additional vectors fm+2,. . . ,fn, iff

n > m+ 1. By the decomposition

x(t) =
n∑

i=1

qi(t)fi (7.406)

w.r.t. this basis, with relations (7.398) - (7.400), (7.402) - (7.404) the Lagrangian (7.395)

takes the form

L =
1

2

(
−
(
q̇1
)2

+
4

u2

[
m+1∑
s=2

(q̇s)2 −
m∑

p=2

q̇pq̇p+1

]
+

n∑
k=m+2

(
q̇k
)2)

−a(1)e2q2−q3 −
m∑

r=3

a(r−1)e2qr−qr−1−qr+1 − a(m)e2qm+1−qm

. (7.407)

The equations of motion for q1(t), qm+2(t) , . . . , qn(t) read

q̈1(t) = 0 , q̈m+2 = 0 , . . . , q̈n(t) = 0 . (7.408)

Then,

q1(t) = a1t+ b1 (7.409)

qk(t) = akt+ bk , k = m+ 2, . . . , n. (7.410)

The other equations of motion for q2(t),. . . ,qm+1(t) follow from the Lagrangian

LE =
m+1∑
s=2

(q̇s)2−
m∑

p=2

q̇pq̇p+1− u2

2

[
a(1)e2q2−q3

+
m∑

r=3

a(r−1)e2qr−qr−1−qr+1

+ a(m)e2qm+1−qm

]
.

(7.411)
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The linear transformation

qs+1 −→ qs − lnCs , s = 1, . . . ,m , (7.412)

where the constants C1, . . . , Cm have to satisfy

m∑
s=1

Krs lnCs = ln
u2a(r)

2
, r = 1, . . . ,m , (7.413)

brings the Lagrangian into the form

LAm =
m∑

s=1

(q̇s)2 −
m−1∑
r=1

q̇rq̇r+1 − e2q1−q2 −
m−1∑
p=2

e2qp−qp−1−qp+1 − e2qm−qm−1

. (7.414)

The latter represents the Lagrangian of a Toda chain associated with the Lie algebra Am

[90] when the root vectors are put into the Chevalley basis and coordinates describing the

motion of the mass center are separated out.

We use the method suggested in [156] for solving the equations of motion following

from (7.414) and obtain

e−qs ≡ Fs(t) =
m+1∑

r1<...<rs

vr1 · · · vrs∆
2(r1, . . . , rs)e

(wr1+...+wrs )t (7.415)

where ∆2(r1, . . . , rs) denotes the square of the Vandermonde determinant

∆2(r1, . . . , rs) =
∏

ri<rj

(
wri

− wrj

)2
. (7.416)

The constants vr and wr have to satisfy the relations

m+1∏
r=1

vr = ∆−2(1, . . . ,m+ 1) , (7.417)

m+1∑
r=1

wr = 0 . (7.418)

The energy of the Toda chain described by this solution is given by

E0 =
1

2

m+1∑
r=1

w2
r . (7.419)

Finally, we obtain the folowing decomposition of the vector x(t)

x(t) = (a1t+ b1)f1 +
m∑

s=1

−2 (lnFs(t) + lnCs)

< us, us >
us +

m∑
k=m+2

(akt+ bk)fk . (7.420)

We remind the reader that the coordinates xi(t) of the vector x(t) are, with respect to the

canonical basis in Rn, the logarithms of the scale factors in the corresponding cosmological

model.
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Let us introduce the vectors

α = a1f1 +
n∑

k=m+2

akfk ≡
n∑

i=1

αiei ∈ Rn , (7.421)

β = b1f1 +
n∑

k=m+2

bkfk ≡
n∑

i=1

βiei ∈ Rn , (7.422)

with αi, βi being their coordinates with respect to the canonical basis. Using (7.403) and

(7.404), we conclude these coordinates have to satisfy the following equations

< α, us >=
n∑

i,j=1

Gijα
iuj

(s) = 0 , s = 1, . . . ,m , (7.423)

< β, us >=
n∑

i,j=1

Gijβ
iuj

(s) = 0 , s = 1, . . . ,m , (7.424)

where the ui
(s) are the coordinates of us in the canonical basis (see (7.387)).

The total energy E of the system is given by

E =
1

2
< α, α > +

2

u2
E0 =

1

2

n∑
i,j=1

Gijα
iαj +

1

u2

m+1∑
s=1

(ws)
2 . (7.425)

If n = m+ 1, then < α, α >= − (a1)
2 ≤ 0. With (7.425), we then obtain E ≤ 2

u2E0.

Finally, the scale factors of the multidimensional cosmological model with the La-

grangian (7.395) and the energy constraint (7.396) are given by

exi(t) =
m∏

s=1

[
F̃ 2

s (t)
]−ui

(s)
/<us,us>

eαit+βi

, (7.426)

where

F̃s(t) = Cs · Fs(t) , s = 1, . . . ,m . (7.427)

Using (7.374) we obtain the following solution for the densities of the perfect fluid com-

ponents

ρ(1) = A(1)e−2γ0
F̃2

F̃ 2
1

, ρ(m) = A(m)e−2γ0
F̃m−1

F̃ 2
m

ρ(p) = A(p)e−2γ0
F̃p−1F̃p+1

F̃ 2
p

, p = 2, . . . ,m− 1. (7.428)

where γ0 is defined by (7.121) and may be calculated by (7.426).

The constants Cs are specified by (7.413). The solution contains the parameters

αi, βi, vr, wr (i = 1, . . . , n, r = 1, . . . ,m+1) obeying the constraints (7.423),(7.424),(7.417),

(7.418),(7.425). If the energy E is arbitrary (see (7.396)) the solution has 2n free param-

eters as required.

117



7.7.2 Example in Einstein frame

We consider a space-time manifold M

M = R×M3
1 ×M3

2 ×M4
3 (7.429)

where M3
1 , M3

2 , and M4
3 are factor spaces of dimension N1 = 3, N2 = 3, and N3 = 4,

respectively. The first component of the perfect fluid shall have the h
(1)
i values

h
(1)
1 = 0 , h

(1)
2 = h , h

(1)
3 = 0 (7.430)

while the second component is given by

h
(2)
1 = h , h

(2)
2 = 0 , h

(2)
3 = 0 . (7.431)

h is a real valued parameter with the restriction

h 6= 0. (7.432)

Here, with m = 2, relations (7.398), (7.399) are fulfilled indeed.

In this case, the exact solution of the field equations gives the metric in the Brans-Dicke

frame (for some remarks on the Einstein frame see below) by

g =
[
F̃1(t)F̃2(t)

] 2
h

×
{
− e8α0t+8β0dt2 +

[
F̃2(t)F̃

4
1 (t)

]−2
3h
ds2

1 +
[
F̃1(t)F̃

4
2 (t)

]−2
3h
ds2

2 +
e2α0t+2β0[

F̃1(t)F̃2(t)
] 2

h

ds2
3

}
(7.433)

where α0 ≡ α3 and β0 ≡ β3 are integration constants. Furthermore here

F̃1(t) = κ2
[
A(1)

] 2
3
[
A(2)

] 1
3 h2F1(t) , (7.434)

F̃2(t) = κ2
[
A(1)

] 1
3
[
A(2)

] 2
3 h2F2(t) , (7.435)

F1(t) = v1e
w1t + v2e

w2t + v3e
w3t , (7.436)

F2(t) = v1v2(w1 − w2)
2e(w1+w2)t + v1v3(w1 − w3)

2e(w1+w3)t

+v2v3(w2 − w3)
2e(w2+w3)t . (7.437)

In our case, the energy E is given by

E = −6α2
0 +

1

2h2

[
w2

1 + w2
2 + w2

3

]
= −κ2A(0) . (7.438)

A(0) > 0 means that Zeldovich matter is present in all the internal spaces (See the remarks

at the end of sect. 3). With A(0) = 0 (7.438) is the energy constraint specialized to our

example.

The nine parameters w1, w2, w3, v1, v2, v3, α0, β0, E have to satisfy (7.437) and the two

further relations

w1 + w2 + w3 = 0 (7.439)
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and

v1v2v3 = [(w1 − w2)(w2 − w3)(w1 − w3)]
−2 (7.440)

(See (7.418) and (7.417)!).

Finally, we have to give the expressions for the matter densities ρ(1) and ρ(2). They

read

ρ(1) = A(1)
[
F̃
−2− 2

h
1 (t)F̃

1− 2
h

2 (t)
]
e−8α0t−8β0 , (7.441)

ρ(2) = A(2)
[
F̃
−2− 2

h
2 (t)F̃

1− 2
h

1 (t)
]
e−8α0t−8β0 (7.442)

and their quotient is

ρ(2)

ρ(1)
=
A(2)

A(1)

(
F̃1(t)

F̃2(t)

)3

. (7.443)

The solution is invariant under (w1, w2, v1, v2) → (w2, w1, v2, v1). Still there is a lot of

freedom for a solution. Hence it is difficult to identify general properties of the solutions.

What one can say is the following: We know that(
ex1(t)

)−3h

∝
∣∣∣∣F1(t)

F 2
2 (t)

∣∣∣∣ (7.444)

and (
ex2(t)

)−3h

∝
∣∣∣∣F2(t)

F 2
1 (t)

∣∣∣∣ . (7.445)

An easy but tedious discussion of the different possibilities of choosing the parameters w1

and w2 shows that the expressions (7.444) and (7.445) have for t → ±∞ the following

shape: ∣∣∣∣F2(t)

F 2
1 (t)

∣∣∣∣ t→±∞−→ ef±∞(w1,w2)t (7.446)

and ∣∣∣∣F1(t)

F 2
2 (t)

∣∣∣∣ t→±∞−→ eg±∞(w1,w2)t (7.447)

with some functions f±∞, and g±∞ of the parameters w1 and w2 being negative for +∞
and positive for −∞. This shows that the scale factors of the manifold M1 and M2 go to

infinity for t→ ±∞. As for the scale factor ex3(t) of the manifold M3, we have(
ex3(t)

)3h

∝ e3α0ht (7.448)

where k(w1, w2) is some positive function of the parameters w1 and w2.

The proper time T as a function of harmonic time t is given by integration of dT = eγ0dt

with γ0 = 3x1 + 3x2 + 4x3. For t → ±∞ the behavior of both, the proper time T and

the scale factor ex3
depends on the choice of α0. This holds for the case that in all

manifolds Zeldovich matter is present. If the case is excluded then α0 is given by the

energy constraint.
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Let us now also consider the metric in the Einstein frame for the example considered

here. The conformal factor (7.384)

Ω−2 = e3x2+4x3

(7.449)

and the metric for the Einstein frame is given in the gauge (7.394) by

g(E) = e3x2+4x3
(
−e2(3x1+3x2+4x3)dt⊗ dt+ e2x1

g(1)
)

+
3∑

i=2

e2xi

g(i) . (7.450)

Finally,

TE =

∫
e3x1+ 9

2
x2+6x3

dt (7.451)

is the cosmic (i.e. proper, i.e eigen) time in the Einstein frame.

Although we have specialized already to an example, there are still too many param-

eters for a complete analytic discussion of the solution in this metric frame with T being

the eigen time coordinate. To give an idea, we consider the following case:

w3 = 0 , (7.452)

w2 = −w1 < 0 , (7.453)

v1 = v2 =
1

2w2
1

=
v3

2
, (7.454)

α0 =
w1√
6h

. (7.455)

Eq. (7.455) results from the requirement that the factor spaces here do not share a

common additional Zeldovich matter contribution. In the following, the constants A(1)

and A(2), not essential for a discussion of the solution’s qualitative behavior, are chosen

to simplify expressions. Then,

F1(t) = F2(t) =
1

w2
1

[
1 +

1

2

(
ew1t + e−w1t

)]
. (7.456)

F1 is a positive and time symmetric function. Therefore all scale factors are strictly

positive.

With all these requirements, after some constant rescalings g(E) 7→ ds2, g(i) 7→ ds2
i ,

the metric reads

ds2 = −F 5/h
1 e12α0tdt⊗ dt+ F

5/3h
1 e4α0tg(1) + F

2/3h
1 g(2) + e2α0tg(3) . (7.457)

The proper time TE is a solution of

dTE ∝ F
5/2h
1 e6α0tdt . (7.458)

For t→ +∞, the choice (7.455) yields

TE ∝ e(
5
2
+
√

6)w1t
h . (7.459)

Needless to say that the choices of parameters above have mainly been made for the

sake of mathematical simplicity. The study of more realistic models, though beyond the

scope of the present paper, could be a topic for future investigations. Our example above

just served to demonstrate the general method.
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7.8 2-dimensional dilaton gravity

In the case D0 = 2, the gauge f
!
= 0 does not exist, and the corresponding conformal

transformation, which for D0 6= 2 connects the gauge γ
!
= 0 with the gauge f

!
= 0, is

singular for D0 = 2 (cf. [26]). Let us adopt therefore the gauge γ
!
= 0, and set

σ := −1

2
(s)qz1 = −1

2
ln(φ) ,

m :=
1

(s)q2
=
D′ − 1

D′ ,

k := − D′

D′ + 1
. (7.460)

Then, the action takes the string-like form

(s)S =
1

2κ2
0

∫
M0

d2x
√
|g(0)| e−2σ

{
R[g(0)] + 4m(∂σ)(∂σ)−

n∑
i=2

(∂zi)(∂zi)

e−2( 1
k
+m)σ +

n∑
i=1

R[g(i)]e−2
∑n

j=2(T−1)i
jzj

}
, (7.461)

where T−1 is the inverse of the homogeneous linear transformation (6.30).

The conformal transformation g(0) 7→ g̃(0) := e−2mσg(0) then yields

(s)S =
1

2κ2
0

∫
M0

d2x
√
|g̃(0)| e−2σ

{
R[g̃(0)]−

n∑
i=2

g̃(0)λν ∂z
i

∂xλ

∂zi

∂xν

+e−
2
k
σ

n∑
i=1

R[g(i)]e−2
∑n

j=2(T−1)i
jzj

}
, (7.462)

where the dilatonic field σ has become kinetically irrelevant. This peculiarity of the case

D0 = 2 has been discussed in [26] in more detail. In [29] a particular application is given

by a 2 + 3-dimensional model with spherical symmetry.

7.8.1 Reduction of inhomogeneous cosmology to dimension 2

Let us now consider in more details the dimensional reduction to a space-time of dimension

D0 = 2. In this case the conformal transformation to the Einstein frame is singular,

whence the model can not be expressed in this frame. This is not a fault of the theory,

but rather corresponds to the well known fact that 2-dimensional Einstein equations are

empty, i.e. they do not imply a dynamics [157, 158]. Thus we shall consider 2-dimensional

dilaton gravity only.

We start with the case with one dilaton, n = 1. The action can be written in the

’string-like’ form [159, 160, 161]

S =
1

2κ2
0

∫
M0

d2x
√
| det g(0)|e−2σ

{
R[g(0)] + 4mg(0)λν ∂σ

∂xλ

∂σ

∂xν
− 2Λe−2( 1

k
+m)σ

}
, (7.463)
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where

σ := −1

2
d1β

1 ,

m :=
d1 − 1

d1

,

k := − d1

d1 + 1
,

2Λ := −R[g(1)] . (7.464)

By a conformal transformation of g
(0)
µν to

g̃(0)
µν = e−2mσg(0)

µν , (7.465)

we can formulate the action without kinetic dilation term, as

S =
1

2κ2
0

∫
M0

d2x
√
| det g̃(0)|e−2σ

{
R̃[g̃(0)]− 2Λe−

2
k
σ
}
. (7.466)

The 2d actions (7.463) and (7.466) are invariant under homogeneous conformal transfor-

mations

ǧ(0)
µν := Ω−2g̃(0)

µν ,

ǧ(1)
µν := Ω−2g(1)

µν , (7.467)

where Ω is constant. Applying (7.467) with

Ω2 := − d1

(d1 + 1)
1+ 1

d1

1

2Λ

yields

2Λ̌ := −Ř[ǧ(1)] = − d1

(d1 + 1)
1+ 1

d1

=
k

(k + 1)1+ 1
k

(7.468)

and the action (7.466) now reads

S =
1

2κ2
0

∫
M0

d2x
√
| det ǧ(0)|e−2σ

{
Ř[ǧ(0)]− 2Λ̌e−

2
k
σ
}
. (7.469)

If we assume that the dilaton field is specifically given through the geometry on M0 and

the dimension d1 of M1, according to

e−2σ := (k + 1)
(
Ř[ǧ(0)]

)k
, (7.470)

then the action (7.469) takes the form [162, 160, 161, 163]

S =
1

2κ2
0

∫
M0

d2x
√
| det ǧ(0)|

(
Ř[ǧ(0)]

)k+1

=
1

2κ2
0

∫
M0

d2x
√
| det ǧ(0)|

(
Ř[ǧ(0)]

) 1
d1+1 . (7.471)
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In the general case of multi-scalar fields, the kinetic term of the dilaton can be removed

by an obvious analogous procedure. The ’string-like’ form of the action then is

S =
1

2κ2
0

∫
M0

d2x
√
| det g(0)|e−2σ

{
R[g(0)] + 4mg(0)λν ∂σ

∂xλ

∂σ

∂xν
−

n∑
i=2

g(0)λν ∂z
i

∂xλ

∂zi

∂xν

−e−2( 1
k
+m)σ

n∑
i=1

2Λie
−2

∑n
j=2 U i

jzj

}
, (7.472)

where now

σ := −1

2
qz1 ,

m :=
1

q2
=
D′ − 1

D′ ,

k := − D′

D′ + 1
,

2Λi := −R[g(i)]. (7.473)

With (7.473), the conformal transformation (7.465) yields

S =
1

2κ2
0

∫
M0

d2x
√
| det g̃(0)|e−2σ

{
R̃[g̃(0)]−

n∑
i=2

g̃(0)λν ∂z
i

∂xλ

∂zi

∂xν

−e−
2
k
σ

n∑
i=1

2Λie
−2

∑n
j=2 U i

jzj

}
. (7.474)

In (7.474) there is no kinetic term of the dilaton field. The kinetic terms of all extra scalar

fields zi have the normal sign. The extra fields zi play the role of usual matter, coupling

to the dilaton field σ.

7.8.2 Example: dilaton gravity from 5-dimensional Einstein gravity

We start from the 5-dimensional gravitation action

S =
1

2κ2

∫
M
d5x
√
|g|R[g] + SGHY (7.475)

with the Gibbons-Hawking-York boundary term SGHY, and apply the formalism of di-

mension reduction from last section. M is a manifold of dimension D = 5, factorizing

into a a Lorentzian manifold M0 of dimension D0 = 1 + 1 and a compact homogeneous

Riemannian manifold M1 of dimension d1 = 3,

M = M0 ×M1 . (7.476)

We may choose conformal light cone coordinates x+ and x− on M0 such that the metric

is

g(0) = −e2ρdx+ ⊗ dx− , (7.477)
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whence in these coordinates g
(0)
11 ≡ g++ = 0, g

(0)
12 ≡ g+− = −1

2
e2ρ, and g

(0)
22 ≡ g−− = 0

while the metric on S3 is homogeneous. On M the metric is defined by the warped metric

g = g(0) + e2βg(1) (7.478)

where β ≡ −φ is a warp function depending on x+ and x−. This corresponds to n = 1

and a gauge γ = 0. The effective 2-dimensional action here is

(s)S =
1

4κ2
0

∫
M0

dx−dx+
√
|g(0)|e3β

{
R
[
g(0)
]
+ 6g(0) λν ∂β

∂xλ

∂β

∂xν
+R

[
g(1)
]
e−2β

}
(7.479)

where λ and ν take the values 1 or 2.

Another equivalent formulation is reached after introduction of the Brans-Dicke (BD)

field, for n = 1 defined via

Φ ≡ e−d1φ := ed1β . (7.480)

Then, the action (7.479) reads

(s)S =
1

4κ2
0

∫
M0

dx−dx+
√
|g(0)|

{
ΦR

[
g(0)
]
+

2

3
g(0) λν 1

Φ

∂Φ

∂xλ

∂Φ

∂xν
+R

[
g(1)
]
Φ

1
3

}
. (7.481)

With n = 1, the negative Brans-Dicke parameter is −ω = 1 − (1/d1) = 2
3
, and, with

d1 = 3, the last exponent is 1 − (2/d1) = 1
3
. Note that according to (7.480), a BD

field e−3φ is typical for a reduction of our (2 + 3)-dimensional theory, while that of a

(2 + 2)-dimensional theory, like e.g. in [164], would be e−2φ. With

σ := −3

2
β ,

m :=
2

3
,

k := −3

4
,

Λ := −3 , (7.482)

the action (7.481) takes the ‘string-like’ form

(s)S =
1

4κ2
0

∫
M0

dx−dx+
√
|g(0)|e−2σ

{
R
[
g(0)
]
+

8

3
g(0) λν ∂σ

∂xλ

∂σ

∂xν
+R

[
g(1)
]
e

4
3
σ

}
.

(7.483)

After a conformal transformation

g
(0)
λν 7→ g̃

(0)
λν := e−

4
3
σg

(0)
λν , (7.484)

the action is free of any kinetic dilaton term. Explicitly, it reads

(s)S =
1

4κ2
0

∫
M0

dx−dx+
√
|g̃(0)|e−2σ

{
R̃
[
g̃(0)
]
+R

[
g(1)
]
e

8
3
σ
}
. (7.485)

Furthermore, the action is invariant with respect to constant conformal transformations

ǧ
(0)
λν := Ω−2g̃

(0)
λν ,

ǧ
(1)
λν := Ω−2g̃

(1)
λν . (7.486)
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Let us choose now Ω2 := 41/38. If we assume the geometries on M1 and M0 to be related

by

e−2σ !
=

1

4

(
Ř
[
ǧ(0)
])−3/4

, (7.487)

the action (7.485) takes the higher order-form

(s)S =
1

4κ2
0

∫
M0

dx−dx+
√
|ǧ(0)|

(
Ř
[
ǧ(0)
])1/4

. (7.488)

7.8.3 Spherically symmetric model coupled to matter

We now restrict to field configurations with 3-spherical symmetry,

M = M0 × S3 , (7.489)

where, with g(1) = dΩ2
3, the 5-dimensional metric can be written as

(5)ds2 =(2) ds2 + e−2φdΩ2
3 ,

(2)ds2 ≡ g(0) = −e2ρdx+ ⊗ dx− , (7.490)

and the curvature scalar of the unit 3-sphere is R
[
g(1)
]

= 6. As in the previous section,

we use a conformal parametrization g+− = −1
2
e2ρ, g++ = g−− = 0, in light cone coordi-

nates x± = (x0 ± x1) on M0. φ is a dilatonic field corresponding to M0-dependent, but

homogeneous, dilations of the 3-sphere S3. The solutions of the classical action are, of

course, the known 5-dimensional Schwarzschild solutions which are periodic in imaginary

time and hence have the usual temperature for the 5-dimensional case. The metric (7.490)

then yields the Ricci curvature scalar

(5)R = 6e2φ + e−2ρ(48∂+φ∂−φ− 24∂+∂−φ) + (2)R , (2)R = 8e−2ρ∂+∂−ρ , (7.491)

and the 2-dimensional dilaton-gravity action of (7.481), with (7.480), specializes to

(2)S =
1

4κ2
0

∫
M0

dx−dx+
√
|g(0)|e−3φ((2)R + 6(∇φ)2 + 6e2φ)

=
1

2κ2
0

∫
M0

dx+dx−e−3φ(−2∂+∂−ρ+ 6∂+φ∂−φ−
3

2
e2φ+2ρ) , (7.492)

which is analogous to the classical actions of the CGHS model [159] and the model of

Lowe [164] (in these models the 2-dimensional coupling constant is gauged to κ2
0 ≡ π

2
),

except for the coefficient of the kinetic dilatonic term and, more importantly, the presence

of a dilatonic factor e−3φ (the characteristic BD field for a model reduced from a 2 + 3-

dimensional one) instead of the usual e−2φ (the typical BD field for an effective reduction

of a 2 + 2-dimensional model). Therefore, when ρ is constant, in (7.492) the last term

can no longer be interpreted as a cosmological constant, as for its analogue according to

[159, 164].

Since the divergence term of the Liouville field ρ in (7.492) is the same as in [159, 164],

the semiclassical quantum corrections, induced by coupling ρ to N additional matter fields
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in 2 dimensions and integrating out their fluctuations, yield the same terms for (7.492)

as in [159, 164]. Hence, in the conformal gauge (7.490), we obtain the effective action

Seff =
1

2κ2
0

∫
M0

dx+dx−
[
e−3φ(−2∂+∂−ρ+ 6∂+φ∂−φ)

−3

2
e−φ+2ρ − 1

2

N∑
j=1

∂+fj∂−fj +
N

12
∂+ρ∂−ρ

]
, (7.493)

where fj, j = 1, . . . , N are massless non-dilatonic scalar matter fields. The equation of

motion derived from (7.493) with dilatonic scalar field φ, Liouville field ρ, and matter

fields fj, are

∂+∂−ρ = 2∂+∂−φ− 3∂+φ∂−φ−
1

4
e2φ+2ρ (7.494)

∂+∂−φ =
3

2
∂+φ∂−φ+

1

8
e2φ+2ρ +

1
2

1− N
36
e3φ

(∂+∂−φ+
1

4
e2φ+2ρ) (7.495)

∂+∂−f = 0. (7.496)

To these equations of motion we have to add the constraints which arise from the energy-

momentum tensor of (7.493) associated to the vanishing metric components g++ and g−−
in conformal gauge. We then obtain Ricci curvature tensor components

R±±[g] = 3∂2
±φ− 6∂±ρ∂±φ− 3(∂±φ)2 . (7.497)

Hence, the additional energy-momentum constraints from (7.493) read

T±± := e−3φ[6∂±ρ∂±φ− 3∂2
±φ+ 3(∂±φ)2]

+
1

2
(∂±f)2 − N

12
[(∂±ρ)

2 − ∂2
±ρ+ t±]

!
= 0, (7.498)

where t± ≡ t±(x±) are functions of integration to be fixed by the boundary conditions.

In the equations above, quantum corrections are represented, according to [159, 164],

by the term proportional to the number N of (non-dilatonic scalar) matter fields. These

corrections become small as one recedes from the (black hole) singularity. The curvature

singularity occurs at the point where equation (7.495) degenerates, i.e. at a critical value

of the dilaton field

φ = φcr := −1

3
ln
N

18
, (7.499)

which is different (namely larger resp. smaller for N > 128
3

resp. N < 128
3

) than the critical

value −(1/2) ln(N/24) where the singularity appears for the black-hole models obtained

from a 2-dimensional reduction of 2 + 2-dimensional Einstein gravity (see [164]).

7.8.4 Static solutions and the horizon problem

We shall consider now static solutions, of two different classes: First, finite-mass solutions,

and secondly, infinite-mass solutions which represent black holes supported by an incoming

flux of radiation.
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According to [164], the most natural choice for the radial coordinate corresponding to

the finite-mass static solutions is

σ :=
1

2
(x+ − x−) ≡ x1 , (7.500)

i.e. the radial coordinate is nothing but just the space like coordinate on the world sheet

of the string. It is in this sense that the finite-mass static solutions correspond to a four-

dimensional space-time having the structure of a wormhole. In terms of the coordinate

σ, the equations of motion (7.494) and (7.495) reduce to

φ′′ =
3

2
(φ′)2 − 1

2
e2φ+2ρ +

1

2

φ′′ − e2φ+2ρ

1− N
36
e3φ

(7.501)

ρ′′ = 2φ′′ − 3(φ′)2 + e2φ+2ρ, (7.502)

where (·)′ := d
dσ

(·). With fj = 0, the two constraint equations from (7.498) reduce in the

static case to

e−3φ[
3

2
ρ′φ′ − 3

4
φ′′ +

3

4
(φ′)2]− N

48
[(ρ′)2 − ρ′′ + t]

!
= 0. (7.503)

Here t ≡ t(σ) is a σ-dependent function of integration which has to be chosen consis-

tently with the static boundary conditions. We now solve (7.501)-(7.503) in two limiting

situations.

First, we note that the vacuum corresponds to solutions with t = 0. When obtained

from the equations above, such a vacuum coincides with that found by Lowe in the 2D

model derived by dimensional reduction of the 4-dimensional Einstein action [164], i.e.

φ = − lnσ , ρ = 0. (7.504)

We turn now to the asymptotic (σ → ∞) solution of equations (7.501)-(7.503). These

will be obtained by solving the linearized equations of motion about vacuum (7.504) for

t = 0. The resulting asymptotic finite-mass solution is

φ = − lnσ +
2M

σ2
, ρ =

M

σ2
, (7.505)

which, in turn, shows a different behaviour with respect to that of the corresponding

solutions obtained by Lowe in his 4-dimensional example [164]. Equations (7.501) and

(7.503) are different from the corresponding equations of [164]. Especially, with (7.505),

terms containing N do not cancel. This means that with growing N the value of σ must

increase too.

With τ := (1/2)(x++x−) ≡ x0 and σ := (1/2)(x+−x−) ≡ x1, in linear approximation,

solution (7.505) corresponds to a 2-dimensional metric

(2)ds2 =

(
1 +

M

σ2

)2

(−dτ 2 + dσ2), (7.506)

which describes two asymptotically Euclidean regions connected by a throat of a size

proportional to M . This is typical for a Euclidean Tolman-Hawking wormhole with
(5)R = 0, as one should expect [165]. This striking result supports the idea that there is
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a close connection between wormholes and the formation and evaporation of black holes

[166, 167].

According to [164], the most natural choice of the radial coordinate for the class of

static solutions having regular event horizons is r2 := −x+x−, with the horizons at r = 0.

Setting now (·)′ := d
dr

(·), the equations of motion become

φ′′ +
φ′

r
=

3

2
φ′2 − 1

2
e2φ+2ρ +

1

2

φ′′ + φ′

r
− e2φ+2ρ

1− N
36
e3φ

, (7.507)

ρ′′ +
ρ′

r
= 2φ′′ +

2φ′

r
− 3φ′2 + e2φ+2ρ , (7.508)

and, for fj = 0, the constraint equations read

e−3φ[6φ′ρ′ − 3φ′′ +
3φ′

r
+ 3φ′2]

!
=
N

12
[ρ′2 − ρ′′ +

ρ′

r
+

t̃

r2
] , (7.509)

where t̃ ≡ t̃(r) is a r-dependent function of integration consistent with regularity condi-

tions at the event horizon.

Regularity of (7.507) to (7.509) at the event horizon (r = 0) may be maintained with

non-trivial boundary conditions

φh
!
= φcr , (7.510)

φ′h
!
=

1

2
ρ′h , t̃h

!
= 0 , (7.511)

with φcr from (7.499). These boundary conditions by themselves do not directly deter-

mine precise values for ρ′h = 2φ′h and ρh at r = 0, whence the general solution can be

parametrized in terms of ρh and ρ′h.

The solution satisfying the special boundary condition ρ′h = ρh = 0 is converging in

the limit r → ∞, to the vacuum (7.504), for φh < φcr, and to the vacuum solutions of

(7.507) and (7.508) for φh = φcr. The latter takes the form

e−φ = a− b ln r , ρ = ln
b

r
, (7.512)

with constants a and b. This is indeed a solution of the same structure as that obtained

in [164] for the 2 + 2-dimensional case. So, as φh → φcr, the solution approaches a

limiting form which cannot be at zero temperature, which suggests then the possibility

that there exists a naked singularity in this limit. This can be seen by approximating

the evaporation of a large mass black hole by a succession of these static solutions and

computing the outgoing energy flux

ε =
N

12
[∂2
−ρ− (∂−ρ)

2] =
N

48b20
,

which gives a finite non zero value, even at the limiting form of the solutions, as far as

the parameter b0 for that limiting form is finite [164].

However, if we choose boundary conditions with (7.510), then a black hole cannot be

formed until the dilaton field reaches exactly the value at which the curvature singularity
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appears as dressed by an emerging horizon. If we allow a large black hole to exist with

variable parameter φh, then, as this parameter approaches φcr, the 2-dimensional geom-

etry, and the transformation required to trivialize the values of ρ and ρ′ on the horizon,

can no longer be determined uniquely, whence ρh and ρ′h might take any value. Although

φh = φcr is typically true for some solution of a particular asymptotic form, it might be

no longer true in a range of masses that would be appropriate for discussing evaporation

[168].

Moreover, it is known from detailed numerical studies that one cannot make any firm

conclusions by looking only at the static solutions (see e.g. [164]). In the present case,

one would expect initially φh > φcr and, as evaporation proceeds, φh approaching φcr.

Whether or not for all solutions this evolution would stop at φh = φcr can be decided only

by more detailed investigations of the corresponding solutions. One possibility would be

to trace the horizon and the singularity numerically as was done in [164].

Recently, several classes of rather general dilaton-gravity models with integrable po-

tentials have been identified in [169]. In fact the dimensionally reduced dilaton-gravity

model (7.492) is integrable. However, the effective model (7.493), which includes addi-

tionally N matter fields and the induced quantum corrections from their coupling to the

2-geometry via the Liouville field ρ, does not directly belong to any of the integrable

classes treated by [169]. However, at present we do not know, whether (7.493) can be

reformulated as an integrable model, whence one might be able to find the exact solution

for the receding horizon problem explicitly.

Because of the particular difficulties one faces in the model (7.493) with both, exact

integration and numerical analysis, a better understanding of its solutions, and the re-

ceding horizon problem in particular, will only be achieved after further investigations,

which at present have to be postponed to possible future work.

8. Discussion

Above three different structures on manifolds and geometries are discussed which admit

applications in three different quite directions of mathematical cosmology.

The part on causal structures and their application in quantum general relativity is

based on most recent work. Accordingly, this part more than others still needs matu-

ration and further development. However, the metric-independent definition of a causal

structure via topologically defined local cones opens an interesting possibility to discuss a

generalized Haag-Kastler system of axioms of quantum (field) theory on differential man-

ifolds without a fixed metric background. This is particularly interesting for a general

relativistic approach to QFT and as an ad hoc possibility to quantize geometry with fixed

causal structure as as a topological background.

Of course there then still remains the question, how strong a causal background struc-

ture can be in order to leave still sufficiently many degrees of freedom for quantum geome-

try. How much more freedom a given causal structure admits for the remaining geometry

as compared to a conformal structure ?

Above in Sect. 2 we presented topological definitions of local (i.e. pointwise) cone (LC)
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structures for a general topological or differentiable manifold M of dimension d + 1 > 2

and notions of causality on M in a purely topological manner. It is remarkable that

such definitions are possible, whence the usual recursion to a Lorentzian metric becomes

redundant.

Proposition 1 gives criteria which locally distinguish the exterior and the interior of

the cone at any point from each other. Proposition 3 and Example 1 provide concrete

global topological conditions for M in order to allow the relative distinction of interior

and exterior of all its cones. Minkowski space is obviously a manifold which satisfies the

conditions for topologically distinguished interior and exterior according to Example 1. It

is however a priori not clear what for each given category CAT of manifolds is the largest

class of manifolds with the topological structure described in Example 1.

We saw that a global consistent distinction between future and past cones requires

just a topological Z2-connection. Note that, as an important possible application, the

canonical approach to quantum gravity comes always along with such a connection. In

fact the canonical configuration variables for oriented manifolds may be there be chosen

as SO(d+ 1)-connections.

The presented LC structures, C-causality, and other our purely topological causality

notions provide a possibility to define causality in quantum theories of quantum gravity.

In contrast to other approaches based on a much weaker local notion of causality on sets,

which essentially involve only a partial ordering, the present definition gives the possibility

to work with a local definition of causality on differentiable manifolds which still captures

the essential notions for curves in a C-causal manifold to be lightlike, timelike or spacelike

without the need of an underlying Lorentzian structure. For any set S in a C-causal

manifold a topological notion of a causal complement S⊥ is given. Any double cone K

in a C-causal manifold has the duality property K ⊥⊥ = K .

For a more general background independent quantum theory the restriction of local

diffeomorphisms to those consistent with a strong LC structure on the whole manifold

might appear too restrictive. After all, a strong LC structure implies already the existence

of a conformal metric, whence diffeomorphisms may be restricted locally to conformal

ones. Nevertheless note that even a strong LC structure is much more flexible than a

conformal metric structure. The local cones of different vertices might refold away from

their vertices with rather complicated intersection topologies while a CAT continuous

conformal metric within its (regular!) domain does not admit refolding singularities of the

characteristic surfaces, each of the which is spanned out by all the null geodesics passing

through a given vertex. Of course refolding and the associated singularities should be a

topic of further more systematic investigations elsewhere.

A strong LC-structure on all of M already implies the existence of a conformal metric

structure and a requirement of compatibility with that metric would reduce the local

covariance group to local conformal diffeomorphisms. One might however also weaken

the LC and causal structure of the manifold by considering in any leaf Σ of a given

foliation only cones with vertices on Γ ⊂ Σ instead on all of Σ. A natural choice for

Γ is the dual graph of a triangulation. Then, the cones have to (CAT-)vary along the

edges, but at least for CAT⊃ C∞ the cones at the vertices of the graph can be freely
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ascribed. Consequently, a geometry constructed on that basis will be invariant under

diffeomorphisms much more general than conformal ones.

Let us however also emphasize that, although the existence of a local conformal metric

is guaranteed by a strong LC structure, it is a priori not obvious that this metric should

play any significant rôle. However, similarly, also the need to restrict diffeomorphisms to

those compatible with the conformal metric may be questioned. One might eventually

expect that within some approach to quantum geometry a cone at a vertex p ∈ O ⊂
Σ should be replaced by an appropriate average over cones with vertices within some

region O of minimal Heisenberg uncertainty. Then the flexibility of the weak and strong

LC structures makes them interesting concepts and potential ingredients for a possible

definition of quantum causality too.

Classically, the existence of a local metric requires only the differentiable structure

in an arbitrary small neighborhood of the vertex, and the defined LC structures fix the

preferred null directions only locally at each vertex. With sufficiently strong notions of

causality (e.g. C-causality above) the null structures of this metric may become consistent

with the global structure of cones of the LC structure. Note that in the case of a given

Lorentz metric null geodesics lie on cones, and with sufficiently strong causality, e.g.

global hyperbolicity, these cones have to be consistent with respect to each other and

under variation of the vertex without refolding into each other (i.e. in particular without

conjugate points).

For Lorentzian manifolds there is a hierarchy of common notions of causality which

have been generalized above. Provided our definitions of causality are sufficiently natu-

ral it should be possible to prove (at least parts) of this hierarchy in the more general

topological setting. However a complete investigation of the mutual relations between

different topological causality concepts is beyond the scope and goal of the present paper.

It should be emphasized that the above was just brief demonstration of the possibil-

ity to introduce notions of cones and causality on CAT topological manifolds without a

metric. In particular, weak and strong LC structures, C-causality, precausality, and some

generalizations of the most common notions of causality have been obtained. However

the investigation is far from complete. It remains for future work to develop the topolog-

ical approach to causal structures on manifolds further, to investigate better some of its

implications, and last not least to demonstrate its advantages in background independent

formulations of algebraic quantum field theory and quantum gravity.

Sect. 3 gives a first idea of possible applications of the causal structures from the

previous Sect. 2 in quantum general relativity.

Sect. 3.1 presented an axiomatic introduction to algebraic QFT on manifolds, gener-

alizing the elegant Haag-Kastler formulation of quantum field theory on Minkowski space.

Sect. 3.1.1 introduced the general axioms of QFT on a differentiable manifold (including

in particular isotony and covariance) which do not require a particular notion of causality,

and Sect. 3.1.2 suggests further axioms for QFT on a manifold with cone causality, all in

closest possible analogy to usual AQFT.

Sect. 3.2 showed how quantum geometry may be discussed as an algebraic quantum

theory within this axiomatic framework. In [4] it was shown how quantum geometry
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may fit into the framework of algebraic QFT. This setting naturally accommodates spin

networks on graphs. This was used in [9] to investigate the classical limit of quantum

geometry. If quantum gravity is a true AQFT with infinitely many vertices, the classical

limit yields a tubular network of resolutions of vertices and edges. Remarkably, resolutions

like these had already previously been discussed in [10]) from a different point of view.

This results obtained should be motivation for further investigations, e.g. on the classical

limit of the geometrical operators.

The work of the second part describes some progress in understanding homogeneous

structures, in particular for (pseudo-)Riemannian manifolds.

Results of Sect. 4 and 5 are a continuation of previous work from [19] and [20]. The

relationship between the classifying spaces of local homogeneous 3-geometries and their

isometries is now understood more deeply.

The classifying space of local isometries in fixed real dimension is given as non-

separating T0-space of corresponding Lie-algebras. In [19] such classifying spaces had

already been constructed up to real dimension 4.

The structure of K3 is understood now in relation to the manifold spanned within the

classifying space of constant isometry of homogeneous 3-geometries. K3 takes the shape

of Morse-like isometry potential, that indicates the level of metastability. The latter can

be achieved by rigidity of the isometry for a geometry corresponding to an interior point

in that manifold.

It was shown that the topology of such a classifying space can be understood as the

dual of the Zariski topology in terms of the Lie algebra cohomology related to deformation

within the category of Lie algebras.

The construction of classifying spaces of local homogeneous Riemannian 3-geometries

is based on scalar geometric invariants as described in [14]. For the Riemannian case,

in contrast to our earlier approaches where we only evaluated the three scalar invariants

from the Ricci tensor, here we additionally evaluate a scalar invariant constructed from

the first covariant derivative of the Ricci tensor. Coincidence of these four invariants

implies local isometry in the set of homogeneous Riemannian 3-manifolds, whereas the

three eigenvalues of the Ricci tensor do not suffice to distinguish the local homogeneous

3-geometries.

This isometry classification can be used to study homogeneous deformations of 3-

dimensional factor spaces of classical cosmological models. The complete parametrization

of local homogeneous 3-geometries is of particular interest for a systematic approach to

their canonical quantization. The spatially homogeneous class is of primary importance

for quantum cosmology.

The analogous scalar invariants have been evaluated also in 3 cases of Lorentzian

signature with the help of computer algebra. As a partial result, one obtains qualitative

differences between each of these cases. One of the main problems with the Lorentzian

signature is to obtain a systematic control of the various possible relative orientations

of the light cone axis with respect to the principal axes of anisotropy in tangent space.

The relationship between the triad of the tangent frame and the signature, have to be

examined in more detail, and also more generally than here, such that e.g. also null eigen
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directions of the triad can be taken into account systematically.

As an application of an isometry classification in the Lorentzian case, one can study

e.g. the rigity of minisuperspace isometries of multidimensional geometries [16].

These new, though still partial, results obtained in the second part on homogeneous

structures indicate an interesting direction for future research.

The large third part on multidimensional geometries deals with the effective sigma-

model [23] for an Einstein-Hilbert action for multidimensional geometries. Various appli-

cations and solutions in multidimensional cosmology derive from this model. It provided

for the first time a systematic geometrical description of bosonic string theory sectors on

a curved rather than background. In [26] the first such description has been obtained for

a multidimensional space-time background. Solutions with p-branes have been obtained

first in [31].

Sect. 6 analyzed the mathematical structure of the multidimensional σ-model, in

particular in 6.1 the model with pure gravitational action from pure multidimensional

geometry, and in 6.2 the model extended to scalars and p + 2 forms. The orthobrane

condition (7.15) allowed us to find exact solutions. According to the second Theorem in

6.3 it is a sufficient condition for the target space of the σ-model to be a locally symmetric

space. It was shown, that apart from cases with degenerate coupling matrix (6.58), the

orthobrane case is the generic one where the target space is locally symmetric.

The structure of the multidimensional sigma-model should admit the application of

covariant quantization techniques in arbitrary effective dimension. For certain classical

solutions with scalars, covariant quantization schemes could be applied rather directly.

The existence and applicability of reformulations of the sigma-model as a matrix-model

or BF-theory is also under present investigation.

The form (6.41) suggests that, in the effective dimension 3+1, the sigma-model in the

Einstein frame should admit a canonical quantization with self-dual connections, similar

as for Einstein gravity with minimally coupled scalar matter fields.

Furthermore, the extension of the sigma-model to Riemann-Hilbert manifolds is cur-

rently under investigation.

In 6.4 convenient coordinate gauges on the base space were presented, which were

used in particular for the solutions of the model presented in Sect. 7. In 7.1 solutions

with Abelian (flat) target space were presented. In 7.2 orthobrane solutions with flat

potential (E)V = 0 in Einstein gauge were obtained. In 7.3, examples of a certain minimal

static, spherically symmetric p-brane configuration are given with just one electric and

one magnetic antisymmetric F component (since in 4 dimensions we only deal with a

single electromagnetic field), which in general intersect and interact with a single scalar

field. Spherical symmetry here is considered in the physical relevant D0 = 4 case of S2

spheres, although the extension to arbitrary spheres is straightforward.

According to the final Theorem of 6.3, besides popular families of orthobrane solu-

tions there are further families of solutions, which have another additional symmetry, e.g.

coinciding F -field charges for the electro-magnetic solutions described in 7.4.2. In the

target space this additional symmetry is expressed by a linear dependency (7.99) between

column vectors Y of the coupling matrix L defined in (6.58).
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For the static solutions of 7.4, Hawking temperature TH can be formally calculated

by surface gravity via a Komar-like integral. For both, the orthobrane case and the

case of equal charges Q2
e = Q2

m, the expressions of TH depend characteristically on the

intersection dimension. This results are also interesting in the context of recent increased

interest in extremal p-brane configurations with black holes [170].

The interpretation of the extremal limit k → 0 is delicate. The solutions above have

been described in isotropic coordinates which cover just the asymptotically flat exterior of

the black hole. A better understanding of their global causality structure would require an

investigation of the maximal extension of the space-time rather than only of its exterior

part. The limit k → 0 is called extremal, since via (7.94) and (7.113) in this limit the

effective asymptotic mass M is just given by the charges, GNM =
1

2
(Bpe + Cpm) and

GNM = p/(1 + d2), respectively. Further work is required to understand this type of

extremality, and the related asymptotics of TH . In the limit k → 0 the latter depends

critically on the intersection dimension d2+1 of the electric and magnetic brane. If d2 = 0

and both charges are nonzero, this temperature tends to zero in this limit; if d2 = 1 and

both charges are nonzero, it tends to a finite limit, and in all other cases it tends to

infinity. TH remains finite for d2 = 1 and becomes infinite for d2 ≥ 2. As it was pointed

out recently in [171] particular care is needed in order to associate the correct physical

charges and thermal properties of a black hole correctly with its horizon.

Global properties of the p-brane black hole solutions like causal structure, boundary

conditions, black hole thermodynamics and extremality are issues under current investi-

gation.

Finally, structural analogies to investigations in [77] suggest that it should be possible

to apply solution generating techniques like the Ehlers-Harrison transformation also in

the context of the multidimensional σ-model.

In Sect. 7.5 we considered the generalization of a homogeneous cosmological model of

Bianchi type I to an anisotropic multidimensional one with n ≥ 2 Ricci-flat spaces of ar-

bitrary dimensions, in the presence of m homogeneous non-interacting minimally coupled

scalar fields. Under certain conditions these models are equivalent to multidimensional

cosmological models in the presence of an m-component perfect fluid with equations of

state P (a) =
(
α(a) − 1

)
ρ(a) with matter constants α(a) for a = 1, . . . ,m. Using this equiv-

alence, for m = 3, we find integrable models when one of the scalar fields is equivalent

to an ultra-stiff perfect fluid component, the second one corresponds to dust, and the

third one is equivalent to a vacuum component. Recent investigations [172], [173] suggest

to apply this 3-component model for an explanation of the current phase of accelerated

expansion.

The dynamics of the universe was investigated in general, as well as in a particular

3-component integrable case. For integrable models, there are four qualitatively different

types of evolution of the universe, depending on the potential U(z0), but in all four cases

the universe has a Kasner-like behaviour near the cosmological singularity.

In the cases where the universe can expand to infinity, an isotropization takes place

and results in an asymptotically de Sitter universe.

In quantum cosmology, instantons, solutions of the classical Einstein equations in Eu-

134



clidean space, play an important role, giving significant contributions to the path integral.

They are connected with the changing geometry of the model. We found here three in-

teresting types of instantons. The first one describes tunnelling between a Kasner-like

universe and an asymptotically de Sitter universe. Sewing a number of these instantons

may provide the Coleman mechanism for the vanishing of the cosmological constant. An-

other type of instanton is responsible for the birth of the universe from ”nothing”. It

was shown that corresponding Lorentzian solutions can ensure inflation of the external

space and compactification of the internal ones. This problem deserves a more detailed

investigation in future research. The third type of instantons describes the Euclidean

space which has an asymptotically anti-de Sitter wormhole geometry.

The scalar field potentials U (a)(ϕ(a)) (a = 1, . . . ,m) can be reconstructed in general.

We performed this procedure for integrable models, and exact forms of potentials.

The equivalence between a scalar field and a perfect fluid component helps also to

investigate the quantum behaviour of the universe. We obtained the Wheeler-de Witt

equation from the effective perfect fluid Lagrangian. Exact solutions are found, some

of which describe cosmological transitions with a signature change of the metric. e.g.

universe nucleation as quantum tunnelling from an Euclidean region. Other solutions are

given as quantum wormholes with discrete spectrum.

In Sect. 7.6 the general transformation of solution into the Einstein frame is given.

Known solutions in the Brans-Dicke frame are transformed into this frame and reinter-

preted (again in cosmic proper time).

Typical solutions for considered models in the Brans-Dicke frame have a general struc-

ture described either by (7.331) or (7.333). For solutions of this type the transformation

to Einstein frame is given by (7.338) and (7.339) respectively. The qualitative difference

induced by the distinct functions z0 and v0 respectively necessitates a separate treatment

of these two classes. In any case, solutions to a given model in the Einstein frame show a

quite different dynamical behaviour from the corresponding solutions in the Brans-Dicke

frame when they are compared in the physically relevant cosmic synchronous time of the

respective frame. (Although the conformal time is indeed the same in both frames, here

it is not the physically relevant one.)

We demonstrated this explicitly on the example of the generalized Kasner solution

(7.343) (and exceptional inflationary solutions (7.349)). With respect to the proper time

in Einstein frame, the external space scale factor a0,E has a surprisingly simple and definite

root law behavior a0,E ∼ t
1/d0

E (except for the case of an exotic imaginary scalar field where

a0,E may be constant). Hence this model does not admit inflation of the external space

in Einstein frame although it can undergo deflation.

In Sect. 7.7 a multidimensional cosmological model with m-component perfect fluid

source and independent pressures in n Ricci-flat factor spaces (n−1 ≥ m ≥ 2) is character-

ized by certain vectors, related to the matter constants in the barotropic equations of state

for fluid components of all factor spaces. We showed that, in the case where we can inter-

pret these vectors as the root vectors of a Lie algebra of Cartan type Am = sl(m+ 1,C),

the model reduces to the classical open m-body Toda chain. Using an elegant technique

by Anderson [156] for solving this system, we integrated the Einstein equations for the
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model and presented the metric in a Kasner-like form.

Finally, Sect. 7.8 described a 2-dimensional dilaton-gravity model obtained via di-

mensional reduction from a higher dimensional Einsteinian gravity model. The effective

model obtained from a 2 + 3-dimensional Einstein-Hilbert action was investigated in the

particular case of spherical internal 3-geometry. Static black holes solutions have been

used to discuss qualitatively the receding horizon problem. It turned out that a black hole

cannot be formed until the dilaton field reaches exactly the value at which the curvature

singularity appears as dressed by an emerging horizon.

To summarize, although the present work analyzes only some particular aspects of

causal, homogeneous, and multidimensional structures on manifolds and geometries aris-

ing in contemporary mathematical investigations of gravitation and cosmology, it clearly

demonstrated the richness and variety of mathematical problems involved. Therefore it

is very likely that “Mathematical Cosmology” is going to establish as a growing field of

future research by its own.
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Special thanks go to P. F. González-Dı́az and to V. N. Melnikov for their valuable reading

of the manuscript. I am also grateful to H. Baumgärtel, H. Friedrich, V. R. Gavrilov, and
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Thesen zur Habilitationsschrift

1. Zum Thema der Arbeit

Die vorliegende Arbeit verdeutlicht den erweiterten Umfang, den die mathematische Kos-

mologie als Teilgebiet der mathematischen Physik aufgrund des aktuellen Stands der

Forschung inzwischen eingenommen hat. Insbesondere die Verallgemeinerung von der

klassischen 1 + 3-dimensionalen Raumzeit auf beliebige multidimensionale Geometrien,

sowie die Untersuchung topologisch-relativistischer kausale Strukturen in Hinblick auf

eine quantisierte Geometrie der Raumzeit, wurden als relativ junge Erweiterungen der

mathematischen Kosmologie insbesondere auch in [1] vertreten.

Der erste Teil, über kausale Strukturen auf Mannigfaltigkeiten und ihre Anwendung in

der modernen mathematischen Kosmologie, basiert auf den relativ jungen Arbeiten [2],

[3], [4], [5], [6], [7], und [8]. Die Anwendung in der Quantengravitation steht auch in Be-

ziehung zu [9] und [10].

Der zweite Teil behandelt homogene (pseudo-Riemannsche) Geometrien auf Mannigfal-

tigkeiten und deren Klassifikation nach Isometrien mit kosmologischen Anwendungen, auf

Grundlage von [11], [12], und [13]. Die mögliche Anwendung in der multidimensionalen

Kosmologie wurde auch schon in [14] dargestellt. Homogene Riemannsche Geometrien

definiter Signatur und ihre Isometrien wurden bereits früher in [15], [16], [17], und [18]

behandelt.

Der dritte Teil, über multidimensionale Geometrien, die Reduktion ihrer Einstein-Hilbert

Wirkung zu einem effektiven σ-Modell, sowie über dessen Anwendung zur Gewinnung

von Lösungen der multidimensionalen Gravitation und Kosmologie ist das Ergebnis von

[19], [20], [21], [22], [23], [24], [25], [26], [27], und [28]. In Bezug hierzu stehen auch die

frühen Arbeiten zur multidimensionalen Kosmologie [29], [30], [31], und zu konformen

Transformationen [32], [33], [34].

2. Zu kausalen Strukturen

2.1. Lokale Kegelstrukturen

Schwache und starke lokale Kegelstrukturen wurden in beliebiger Dimension und für jede

Cr-Kategorie jeweils durch die Einbettung einer Kegelfläche bzw. einer mannigfaltigkeit-

artigen Verdickung einer solchen definiert.

2.2. Kausalität auf topologischen Mannigfaltigkeiten

Allgemeine Definitionen für kausale Strukturen wurden auf topologischen oder differen-

zierbaren Cr-Mannigfaltigkeiten mittels geeigneter lokaler Kegelstrukturen gegeben.

2.3. Kausale Indexmengen und Diffeomorphismen

Die kompakten Doppelkegel definieren geeignete Indexmengen für die Konstruktion von

kausalen Netzen in denen die Topologie der Mannigfaltigkeit kodiert ist. Dies ist für

(global-hyperbolische) Lorentz-Mannigfaltigkeiten wohl bekannt. Topologisch-kausal de-

finierte Doppelkegel ermöglichen die Konstruktion entsprechender Netze allgemeiner auf

Cr-Mannigfaltigkeiten. Mit einer durch lokale Kegel gegebene kausalen Struktur sind die-

jenigen Diffeomorphismen ausgezeichnet, die lokale Kegel wieder in solche abbilden.



3. Zur kosmologischen Anwendung I: Quanten-Relativitätstheorie

3.1. Algebraische QFT auf Mannigfaltigkeiten

Ein Teil der Haag-Kastler Axiome für algebraische Quanten(feld)theorie über dem Minkowski-

Raum benutzt nur topologische Eigenschaften und Relationen der Indexmengen. Diese

Axiome können direkt für differenzierbare Mannigfaltigkeiten verallgemeinert werden.

Der andere Teil der Haag-Kastler Axiome benutzt kausale Eigenschaften und Relatio-

nen der Indexmengen. Mittels des zuvor gewonnenen topologischen Kausalitätsbegriffes

können auch diese Axiome für differenzierbare Mannigfaltigkeiten verallgemeinert wer-

den.

3.2. Quanten-Geometrie

Die wichtigste aktuelle Anwendung findet das verallgemeinerte Haag-Kastler System der

algebraische Quanten(feld)theorie in der Quantengeometrie der Einstein-Gravitation. Als

besonders aktuelles Beispiel ist die Quantengeometrie der äusseren Umgebung eines kau-

salen Horizontes üeber jedem räumlichen Schnitt durch ein Netz von Weyl-Algebren für

Zustände mit einer unendlichen Anzahl von Schnittpunkten von Kanten und transversa-

len Hyperflächen gegeben.

4. Zu homogenen Strukturen

4.1. Homogene Mannigfaltigkeiten

Homogenität einer Mannigfaltigkeit mit Struktur s liegt ganz allgemein dann vor, wenn

die Struktur zwischen zwei Punkten durch einen s-erhaltenden Homeomorphismus trans-

portiert wird. Die s-erhaltenden Homeomorphismen bilden bekanntlich eine Gruppe. Für

(pseudo-)Riemannsche Mannigfaltigkeiten ist dies gerade die transitive Isometriegruppe.

4.2. Lokale homogene Geometrien

4.2.1. Klassifizierende Räume lokaler Isometrien

Jeder homogene (pseudo-)Riemannsche Raum trägt eine minimale transitive Isometrie-

gruppe. Die Klassifikation der Lie-Algebren fester Dimension über algebraisch-geometrische

Invarianten ist deshalb Bestandteil einer algebraisch-geometrischen Klassifikation homoge-

ner (pseudo-)Riemannsche Räume. Bis zur reellen Dimension n = 4 ist der klassifizierende

(topologische) Raum Kn der zuhörigen Lie-Algebren bekannt.

4.2.2. Zariski-duale Topologie und Lie-Algebra Kohomologie

Die Topologie κn des Raumes Kn ist genau die duale Zariski-Topologie. Sie kann mittels

der Lie-Algebra Kohomologie infinitesimaler Deformationen innerhalb der Kategorie der

Lie-Algebren verstanden werden. In κn entsprechen abgeschlossene Punkte Lie-Algebren

die keine spontanen Deformationen zulassen, und isolierte, abgeschlossene Punkte ent-

sprechen Lie-Algebren die keine (weder spontane noch parametrische) Deformationen zu-

lassen. Letztere haben verschwindende, zweite Lie-Algebra Kohomologie H2.

4.2.3. Klassifizierende Räume lokaler homogener Geometrien

Für lokale homogene 3-dimensionale Riemannsche Geometrien definiter Signatur existiert

eine kanonische Konstruktion eines klassifizierenden Raumes mittels algebraischer Invari-

anten des Ricci-Tensors. Für den analogen Fall Lorentzscher Signatur konnten bisher nur

partielle Resultate gewonnen werden. Die indefinite Signatur führt hier zu Entartungen

in den algebraischen Invarianten. Im Prinzip müssten im Tangentialraum sämtliche relati-



ven Orientierungen der Lichtkegelachse gegenüber dem Ellipsoid der anisotropien Skalen

betrachtet werden. Die vorliegende Untersuchung von drei Permutationen der Lorentz-

Signatur ergibt für den von den entsprechenden algebraischen Invarianten aufgespannten

Raum jeweils qualitativ verschiedene Resultate.

5. Zur kosmologischen Anwendung II: Rigität von Isometrien

Im Falle 3-dimensionaler lokaler homogener Riemannscher Geometrien zerfällt deren klas-

sifizierender Raum in Untermannigfaltigkeiten fester charakteristischer 3-dimensionaler

Isometrie. Eine homologische Klassifikation dieser Untermannigfaltigkeiten ergibt, daß

spontane Transitionen (bzw. Deformationen) zwischen den Lie-Algebren der Isometrien

genau solche sind, die die Dimension der zugehörigen Untermannigfaltigkeit im klassifi-

zierenden Raum erniedrigen (bzw. erhöhen). Die Erniedrigung der Dimension findet stets

auf dem Rand der entsprechenden Untermannigfaltigkeit statt. Die lokale Isometrie eines

inneren Punktes einer Untermannigfaltigkeit maximaler Dimension ist dementsprechend

stabil unter Deformationen der zugehörigen Geometrie.

6. Zu multidimensionalen Strukturen

6.1. Das effektive σ-Modell der reinen multidimensionalen Geometrie

Die Einstein-Hilbert Wirkung für eine multidimensionale pseudo-Riemannsche Geometrie

mit homogenen Faktorräumen und geeigneten Randbedingungen reduziert sich im Falle

räumlich homogener oder statischer Geometrien auf ein mechanisches System über einem

Minkowskischen Minisuperraum. Wie in [22] erstmals gezeigt, ist eine solche Wirkung im

allgemeineren Fall homogener interner Faktorräume, bei geeigneten Randbedingungen,

stets auf ein effektives σ-Modell von einer (nicht notwendig homogenen) Mannigfaltigkeit

(M0, g0) in einen konform-flachen, homogenen Target-Raum zurückführbar.

6.2 Das σ-Model mit extra Skalaren und p + 2-Formen

Wie erstmals in [27] gezeigt wurde, kann auch eine um zusätzliche Skalarfelder und anti-

symmetrische p + 2-Formen (in physikalisch typischer Weise) erweiterte Wirkung auf ein

effektives σ-Modell von einer inhomogenen Mannigfaltigkeit (M0, g0) in einen erweiterten

Target-Raum reduziert werden.

6.3 Struktur des Targetraumes

Wie in [19] gezeigt, ist der Target-Raum stets ein homogener Raum. Er ist darüber hinaus

genau dann lokal symmetrisch, wenn die Kopplungsvektoren der Felder entweder ortho-

gonal oder entartet sind.

6.4 Spezielle Koordinateneichungen auf M0

Spezielle Koordinaten-Eichungen einer flache Basismannigfaltigkeit (M0, g0) der multi-

dimensionalen Geometrie (M, g) sind in der Literatur weit verbreitet. Die am häufig-

sten verwendeten Koordinaten sind die sogenannten Eigenkoordinaten, in denen die Me-

trik g0 eine Standarddiagonalform annimmt, und die harmonischen Koordinaten, auf de-

nen der Laplace-Beltrami-Operator der multidimensionalen Metrik g verschwindet. Für

dim M0 = 1 heißt die entsprechende Koordinate Eigenzeit bzw. harmonische Zeit.



7. Zur kosmologischen Anwendung III: Multidimensionale Lösungen

Die Literatur über multidimensionale Gravitation und Kosmologie umfaßt zahlreiche Un-

tersuchungen zu den stationären Punkten einer Einstein-Hilbert-Wirkung für multidimen-

sionale Geometrien mit optional weiteren angekoppelten Feldern. Die meisten dieser auch

kurz Lösungen genannten stationären Punkte ergeben sich als Spezialfälle allgemeiner

Lösungen zum effektiven σ-Modells der multidimensionalen Geometrie, gegebenfalls mit

einem um entsprechende, optionale Zusatzfelder erweiterten Target-Raum. 7.1. Lösungen

mit Abelschem Targetraum

Für dim M0 6= 2 wurde eine neue Ricci-flache Lösung für das multidimensionale σ-Modell

mit Skalarfeldern gefunden, die verallgemeinertes inflationäres Verhalten, nicht nur in zeit-

artiger Richtung, sondern auch in zusätzlichen raumartigen Richtungen von M0 zuläßt.

7.2. Orthobran-Lösungen mit (E)V = 0

Orthobrane sind p-Brane deren Kopplungsvektoren eine bestimmte Orthogonalitätsbe-

dingung erfüllen. Diese stellt für feste Kopplungen eine topologische Bedingung an die

Dimensionen der Schnittmannigfaltigkeiten verschiedener Brane dar. Lösungen des multi-

dimensionalen σ-Models mit Orthobranen und verschwindendem, multidimensionalen Po-

tential (E)V können allgemein aus einer entsprechenden Anzahl von harmonischen Funk-

tionen über (M0, g0) gewonnen werden.

7.3. Spherisch-symmetrische p-Brane

Im Falle des σ-Modells statischer, spherisch-symmetrischer, multidimensionaler Geome-

trien mit Ricci-flachen, internen Faktorräumen und p-Branen, und Skalarfeld reduzieren

sich die Feldgleichungen auf die eines Euklidischen Toda-Systems.

7.4. Schwarze Löcher mit EM Branen

Für sich schneidende, elektische (E) und magnetische (M) Brane in einer minimalen Konfi-

guration mit beliebiger Dimensionen wurde in zwei Fällen jeweils eine Schar von Lösungen

des statischen, spherisch-symmetrischen multidimensionalen σ-Modells gefunden:

1. falls die EM Brane Orthobrane sind,

2. falls die Ladungen der p-Brane degeneriert sind, Q2
e

= Q2
m

.

Die qualitativen Eigenschaften dieser Lösungen sind in beiden Fällen nicht von den Di-

mensionen der einzelnen Faktorräume abhängig, sondern lediglich von der Dimension

d2 +1 des Schnitts der beiden p-Brane. In beiden Fällen sind die Lösungen parametrisiert

durch die beiden Ladungen Qe und Qm der p-Brane sowie einen weiteren (masseartigen)

Parameter k, von dem insbesondere die Hawking-Temperatur TH für den (scheinbaren)

Horizont eines schwarzen Loches abhängt. Im Limes k → 0 skaliert TH in beiden Fällen

(mit nicht verschwindenden Ladungen) für d2 = 0 gegen Null, für d2 = 1 gegen einen

endlichen Wert, und sonst gegen Unendlich.

Die bekannten Reissner-Nordström Lösungen ergeben sich aus der 2. Schar von Lösungen,

für d2 = 0.

7.5. Räumlich homogene Lösungen

Multidimensionale kosmologische Modelle mit Ricci-flachen Faktorräumen und kompo-

nentigem perfektem Fluid ergeben sich als Spezialfälle aus dem σ-Modell der multidi-

mensionalen Geometrie, wobei jede Komponente durch genau ein zusätzliches Skalarfeld

beschrieben wird. Die allgemeine Dynamik eines solchen, anisotropen Modells ist quali-



tativ durch ein Kasner-artiges Verhalten nahe der Singularität und eine Isotropisierung

während der Expansion gegen in eine asymptotische de Sitter-Raumzeit charakterisiert.

Für ein integrables 3-Komponenten-Modell (mit steifer Materie, Staub, und Vakuum)

wurden die expliziten klassische Lösungen mit Lorentzscher Signatur, sowie die analogen

Lösungen Euklidischer Signatur bestimmt. Aus letzteren wurden klassische Wurmlöcher

konstruiert. Die Potentiale der Skalarfelder können nach einem allgemeinen Verfahren für

das integrable Modell explizit rekonstruiert werden. Für die Wheeler-de Witt-Gleichung

des quantisierten Modells gibt es ebenfalls exakte Lösungen, sowohl mit diskretem als

auch kontinuierlichem Spektrum.

7.6. Das Einsteinsche Bezugssystem in der Kosmologie

Physikalisch relevante kosmologische Lösungen sollten stets im Einsteinschen Bezugsy-

stem, definiert durch minimale Kopplung der zusätzlichen Felder an die Metrik, inter-

pretiert werden. Die konforme Transformation von Lösungen des multidimensionalen σ-

Models in entsprechende Lösungen im Einsteinsche Bezugsystem kann für dim M0 6= 2

allgemein angegeben werden. In konkreten Beispielen hat die transformierte Lösung im

allgemeinen qualitativ wesentlich verschiedene Eigenschaften. Es wurde insbesondere ge-

zeigt, daß urprünglich inflationäre Lösungen dann im Einsteinschen Bezugssystem oft

nicht mehr inflationär sind.

7.7. Multidimensionale m-komponentige Kosmologie

Das multidimensionale kosmologische Modell mit m-komponentigem perfektem Fluid mit

verschiedenen Drucken in n Ricci-flachen Faktorräumen (2 ≤ m ≤ n− 1) kann durch be-

stimmte Materie-Vektoren charakterisiert werden. Im Falle, daß diese die Wurzelvektoren

einer Lie-Algebra vom Cartan-Typ Am sind, reduziert sich das Modell auf eine klassische

offene Toda-Kette. Diese wurde nach einem in der Literatur bekannten Verfahren inte-

griert. Für ein Beispiel mit n = 3 und m = 2 wurde die Lösung qualitativ diskutiert und

ins Einsteinsche Bezugssystem transformiert.

7.8. 2-dimensionale Dilaton-Gravitation

Im Falle dim M0 = 2 entspricht das multidimensionale σ-Modell einer reinen Dilaton-

Gravitation. Für die Reduktion einer 2 + 3-dimensionalen Geometrie mit spherischer

Symmetrie wurden statische Lösungen bestimmt und das Horizont-Problem diskutiert.
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